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Abstract—Many discrete mathematics problems in phylogenetics are defined in

terms of the relative labeling of pairs of leaf-labeled trees. These relative labelings

are naturally formalized as tanglegrams, which have previously been an object of

study in coevolutionary analysis. Although there has been considerable work on

planar drawings of tanglegrams, they have not been fully explored as

combinatorial objects until recently. In this paper, we describe how many discrete

mathematical questions on trees “factor” through a problem on tanglegrams, and

how understanding that factoring can simplify analysis. Depending on the problem,

it may be useful to consider a unordered version of tanglegrams, and/or their

unrooted counterparts. For all of these definitions, we show how the isomorphism

types of tanglegrams can be understood in terms of double cosets of the

symmetric group, and we investigate their automorphisms. Understanding

tanglegrams better will isolate the distinct problems on leaf-labeled pairs of trees

and reveal natural symmetries of spaces associated with such problems.

Index Terms—Phylogenetics, combinatorics, abstract algebra
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1 INTRODUCTION

CONSIDER the problem of computing the subtree-prune-regraft (SPR)
distance between two leaf-labeled phylogenetic trees. An SPR
move cuts one edge of the tree and then reattaches the resulting
rooted subtree at another edge (Fig. 1). The SPR distance between
two (phylogenetic, meaning leaf-labeled) trees T1 and T2 is the min-
imum number of SPR moves required to transform T1 into T2. This
distance is of fundamental importance in phylogenetics, and many
papers have been written both applying [1], [2] and investigating
properties of [3], [4], [5] this distance.

Say that we wanted to calculate the SPR distance between every
pair of trees on a certain number of leaves. Na€ıvely this would
require a large number of SPR calculations, namely the number of
leaf-labeled phylogenetic trees choose two. However, the distance
between two such trees does not depend on the actual labels of T1

and T2, so one can permute the leaf labels without changing the
distance. Furthermore, a path made by intermediate trees between
the two trees could also have its labels permuted in order to give a
path between the trees with permuted leaf labels. Thus, problems
like SPR distance do not concern the actual leaf labels as such, but
rather use the leaf labels as markers that can be used to map leaves
of one phylogenetic tree on to another: the problem and its solu-
tions are actually defined in terms of a relative leaf labeling (Fig. 1).

Analogous discrete mathematics problems and objects defined in
terms of tuples of labeled combinatorial objects, but without direct
reference to the labels themselves, are ubiquitous in computational
biology. Any distance between pairs of trees that is computed in
terms of tree modifications, such as (rooted or unrooted) subtree-
prune-regraft described above, nearest-neighbor-interchange and tree

bisection and reattachment (see [4] for a review), satisfy this condition.
Such moves are used as the basis of both maximum-likelihood heu-
ristic search and Bayesian Markov chain Monte Carlo (MCMC) tree
reconstruction. The corresponding graph, in which trees form verti-
ces and a collection of moves form edges, has natural symmetries of
pairs of points in these spaces which have the same relative labeling.
For example, hitting times of simple randomwalks on graphs formed
by such moves for given start and end trees [6], [7], [8] are defined in
terms of relative labelings between the start and end trees. The same
is true for more complex randomwalks such asMarkov chainMonte
Carlo using a label-invariant likelihood, as would be used for sam-
pling from a prior distribution on trees [9]. Graph characteristics such
as Ricci-Ollivier curvature [10] under simple random walks or
MCMCwith a label-invariant likelihood are expressed in terms of rel-
ative tree labelings [11]. Analogous considerations hold for the prob-
lem of species delimitation, which can naturally be phrased in terms
of inference of a partition of relatively labeled objects: neither distan-
ces between partitions [12] nor the graphs underlying MCMC over
these partitions [13] actually refer to labels themselves.

The concept of a pair of rooted phylogenetic trees with a relative
leaf labeling has been formalized as a tanglegram [14], [15], [16], [17]. A
tanglegram is a pair of trees on the same set of leaves with a bijection
between the leaves in the two trees [18] (Fig. 2). Any of the problems
described above in terms of a relative labeling of a pair of phyloge-
netic trees can thus be expressed as a problem on tanglegrams. Thus,
we can say that these problems in the discrete mathematics of phylo-
genetic trees “factor” through a problem on tanglegrams. The map
from pairs of trees to tanglegrams is a many-to-one mapping, result-
ing in a substantial computational reduction for situations in which
one would like to solve such a problem on many or all pairs of trees.
There has been extensive work on the problem of finding the layout
of a given tanglegram in the plane that minimizes crossings, with the
goal of most clearly visualizing co-evolutionary relationships
between species [18], [19], [20], [21], [22], [23].

However, we are not aware of any work considering tangle-
grams as a convenient formalization of the notion of a relative leaf
labeling in the context of studying pairs of labeled phylogenetic
trees. There has also been little work enumerating or finding other
properties of tanglegrams until a recent burst of activity stimulated
by our work [24], [25], [26], [27], [28]. In addition, other challenging
and important problems in mathematical phylogenetics reduce to
questions on relatively-labeled collections of more than two trees,
and correspondingly one can extend the notion of tanglegram to
more than two trees. For example, “supertree” methods recon-
struct a tree from collections of trees, each of which is typically con-
sidered to express information about the larger tree [2], [29], [30],
which in fact is a problem on multi-tree tanglegrams. The same is
true for the minimal hybridization network [31] and maximum
agreement subtree [32], [33] problems. Thus even more problems
in the discrete mathematics of phylogenetic trees factor through a
problem concerning a multi-tree version of a tanglegram in the
sense described above, which are called tangled chains below.

With this motivation for studying tanglegrams in more depth, in
this short paper we formalize more general notions of tanglegram,
describe their symmetries, observe that tanglegrams have a conve-
nient algebraic formulation as double cosets of the symmetric group,
provide some enumeration results for four types of tanglegram, and
provide an introduction to the latest work on tanglegrams.

2 TANGLEGRAMS

An unrooted binary tree T is a finite graph for which there is a
unique path between every pair of vertices, and such that every
non-leaf vertex has degree three. A rooted tree is an unrooted tree
with a distinguished node called the root. We will make the
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assumption common in phylogenetics that the root of a rooted tree
has degree two, and that there are no degree-two nodes other than
the root (if there is a root). The leaves LðT Þ of a tree T are degree-
one vertices of the tree.

Definition 1. Let T and S be trees with the same number of leaves. An
ordered tanglegram Y on ðT; SÞ is an ordered triple ðT;f; SÞ, where
f is a bijection LðT Þ ! LðSÞ.
The graph of the tanglegram Y is the graph formed from the union

of T and S by adding an edge from each leaf x in T to the corre-
sponding leaf fðxÞ in S. We will distinguish these between-leaf edges
from the tree edges of T and S (Fig. 2).

We have defined tanglegrams in terms of ordered triples

Y ¼ ðT;f; SÞ, so Y 0 ¼ ðS;f�1; T Þ is a different tanglegram. This is a
sensible definition when considering sequences of trees with an
inherent directionality. However, often there is not such a direc-
tionality, such as for subtree-prune-regraft moves, which are easily
reversed. This motivates the following concept:

Definition 2. A unordered tanglegram is a pair ðfT;Sg; fÞ where
fT; Sg is an unordered set of two trees, and f is a bijection between LðT Þ
andLðSÞ.

2.1 Automorphisms and Tanglegram Equivalence

Let V ðXÞ denote the vertex set of a graph X. An isomorphism

between unrooted trees T and S is a bijective map h : V ðT Þ ! V ðSÞ
in which f maps edges of T to edges of S. For a rooted tree, we add

the requirement that an isomorphism must map the root node of T

to the root node of S. An automorphism of a tree T is an isomor-

phism of T with itself. It is clear that the degree of each node (i.e.,

the number of adjacent nodes) is preserved under isomorphisms.

In phylogenetics, it is common that the root of a tree is the only

node of degree two. In this case, there is no distinction between iso-

morphisms of rooted trees and isomorphisms of these trees as

unrooted trees because degrees are preserved under isomorphism.
We start with an “obvious” lemma. First note that any isomor-

phism between trees T and S preserves the leaf sets LðT Þ and
LðSÞ, and therefore induces a bijection between LðT Þ and LðSÞ.
Lemma 3. An isomorphism between (rooted or unrooted) trees T and S

is uniquely determined by the induced bijection between LðT Þ and
LðSÞ. In particular, an automorphism of a tree T is uniquely deter-
mined by the induced permutation of the leaf set LðT Þ.
Thus we will often use tree isomorphisms T ! S and bijections

LðT Þ ! LðSÞ interchangeably. We can now define the notion of
isomorphism for tanglegrams.

Definition 4. Given two tanglegrams Y ¼ ðT;f; SÞ and Y 0 ¼ ðT;f0; SÞ
on the same pair of trees, an isomorphism of Y and Y 0 is defined by a
pair of automorphisms g : LðT Þ ! LðT Þ and h : LðSÞ ! LðSÞ satis-
fying h � f ¼ f0 � g.
The condition in the definition can be visualized in the commu-

tative diagram

LðT Þ ������!f
LðSÞ

????yg

????yh

LðT Þ�������!f0
LðSÞ:

Note that if two tanglegrams Y1 and Y2 are isomorphic, then
there is a 1-1 map from the graph of Y1 to the graph of Y2 which
maps between-leaf edges to between-leaf edges.

2.2 Symmetries of Trees

In order to describe the ensemble of tanglegrams it is necessary to
review the symmetries of the trees in the tanglegram. Although
this material is classical, we were not able to find a simple presenta-
tion, and so provide one here. We will assume familiarity with the
basics of group theory (covered by dozens of textbooks, e.g., [34]).
Automorphisms of a tree T form a group under composition.
Using Sn to denote the symmetric group on n objects, leaf auto-
morphisms of T form a subgroup AðT Þ ofSjLðT Þj.

To enumerate symmetries of trees it is convenient to use the
notion of a wreath product; we will only define and use wreath
product in the case when the acting group is Sk. Use Gk to denote
the k-fold direct product G� � � � �G, which has group structure
given by component-wise application of G’s group operation.

Given a group G, the wreath product G oSk of G by Sk can be

described as the direct product Gk �Sk with the following group

operation. An element of Sk acts on Gk by permuting the compo-

nents, such that the group action of s 2 Sk on g 2 Gk is the element

sðgÞ 2 Gk with ith component gsðiÞ. Given elements g; g0 in Gk and

s; s0 2 Sk, the wreath group law is

ðg; sÞ ðg0; s0Þ :¼ ðg sðg0Þ; ss0Þ:

For rooted trees, Jordan [35] and P�olya [36] observed that the
automorphism group of any rooted tree can be built by repeated
direct products and wreath products of symmetric groups as fol-
lows. In the simplest case, assume a rooted tree T for which the
root has two children subtrees T1 and T2. If T1 and T2 are isomor-
phic (and thus have the same automorphism groups), the automor-
phism group of T is the wreath product AðT1Þ oS2. That is, its
symmetry group is two copies of AðT1Þ along with the symmetry
exchanging T1 and T2, equipped with the group operation that

Fig. 1. Two equivalent subtree-prune-regraft moves applied to trees which are
identical up to relabeling. The number of such moves required to transform one
tree into another only depends on the relative leaf labeling between the two trees.

Fig. 2. The tanglegram corresponding to the pairs of trees in Fig. 1, with the bijec-
tion shown in gray. Any pair of trees with leaf labels matching as indicated will
have the same subtree-prune-regraft (or any other) distance between them. When
considered as a single graph, the black edges are called tree edges, and the gray
edges are called between-leaf edges.
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appropriately exchanges the subtrees before applying symmetries
to the subtrees. If T1 and T2 are not isomorphic, then AðT Þ is simply
the direct product AðT1Þ � AðT2Þ.

Now let T be a tree whose root has some number of children,
each of which are roots of subtrees T1; . . . ; Tr. We can reorder and
partition the subtrees intoN sets:

fT1; . . . ; Ti1g; fTi1þ1; . . . ; Ti2g; . . . ; fTiN�1þ1; . . . ; TiN g;

such that the subtrees in each set of the partition are isomorphic to
one another and the subtrees in different sets are not isomorphic.
This defines integers i1; . . . ; iN ; take i0 to be zero. A more general
version of the argument above establishes

Theorem 5 (Jordan, 1869). AðT Þ is the direct product A1 � � � � �AN ,
where Aj is the wreath product of AðTij Þ with the symmetric group

Sij�ij�1
.

This defines the automorphism group of a rooted tree recur-
sively, where of course the automorphism group of a single leaf is
trivial.

Example 6. Let Tn denote the perfectly balanced binary tree on 2n

leaves and let Gn ¼ AðTnÞ. G2 ¼ S2 and for each n, Gn ¼
Gn�1 oS2. Moreover, jGnj ¼ 2jGn�1j2.

Example 7. The symmetry group of the Newick-format [37] tree
ð1; ðð2; 3Þ; ðð4; 5Þ; 6ÞÞÞ; (shown as the upper-left tree of Fig. 1) is
the direct product of the symmetry groups of ð2; 3Þ and
ðð4; 5Þ; 6Þ. Each of these symmetry groups isS2.

The automorphism group of an unrooted tree will become clear
after we describe a classical and mathematically natural way to
root an unrooted tree: at the centroid. Let T be a tree, and let x be a
node of T . If we remove x as well as the edges attached to x from
T , we obtain a number of disjoint connected and rooted subtrees,
X1; . . . ; Xk.

Definition 8. The weight of x, wðxÞ, is defined as the maximum number
of nodes of the subtreesX1; . . . ; Xk.

Definition 9. The node x is said to be a centroid of T if wðxÞ is minimal
over all nodes of T .

It is clear that any automorphism of T maps a centroid to a cen-
troid, a fact which we will use to find a root fixed under leaf auto-
morphism. Centroids are unique or nearly so, as shown by the
following theorem, the proof of which can be found as a guided
exercise in [38, Section 2.3.4.4].

Theorem 10 (Jordan, 1869). Every tree has either:

1) a unique centroid or
2) two adjacent centroids.
In case 2, every automorphism either preserves the centroids or

exchanges them.

Let T be an unrooted tree, and let Tr be the rooted tree formed
by rooting T at either the unique centroid, or at a new node in the
edge joining a pair of centroids.

Corollary 11. The automorphism group of an unrooted tree T is identi-
cal to the automorphism group of the associated rooted tree Tr.

Example 12. The symmetry group of the six-leaf unrooted tree
with three two-leaf subtrees (Newick format ðð1; 2Þ; ð3; 4Þ;
ð5; 6ÞÞ; ) isS2 oS3.

2.3 Double Cosets and Enumeration of Tanglegrams

We are now ready to algebraically describe the set of tanglegrams
on a pair of n-leaf trees. Assume n-leaf trees T and S, which are

both rooted or both unrooted. Arbitrarily mark the elements of the
leaf sets LðT Þ and LðSÞ with the same set of n labels, such that we
can identify both AðT Þ and AðSÞ as subgroups of Sn. Using this
same marking, we can also think of the bijections from LðT Þ to
LðSÞ as being elements of Sn, thus these elements ofSn define tan-
glegrams on T and S. Recall Definition 4, stating that the set of
bijections f0 giving the same tanglegram as a given f are those for
which there exist automorphisms g 2 AðT Þ and h 2 AðSÞ such that

h � f ¼ f0 � g. This criterion is equivalent to f0 ¼ hfg�1 as group
elements in Sn. The set of elements satisfying such a criterion is
called a double coset [34].

Definition 13. Given a subgroup J of a group G and g 2 G, the right

coset Jg (resp. left coset gJ) of J in G is the set of elements of the form

fjg j j 2 Jg (resp. fgj j j 2 Jg). The number of right cosets of J in G is

equal to the number of left cosets. This number is defined as the index of J

inG and is denoted ½G : J �. Given two subgroups J andK ofG, thedou-

ble coset JgK for some g 2 G is the set of elements fjgk j j 2 J; k 2 Kg.
Any two right (left) cosets of J in G are either identical or dis-

joint, and the number of elements in any coset is the same, i.e., jJ j.
In contrast to single cosets (left or right), the number of elements in
a double coset may vary. We state these observations, and the
equivalent observations in the unordered case, as a proposition.

Proposition 14. Given two trees T and S with n leaves,

� the set of tanglegrams isomorphic to an ordered tanglegram
ðT; w; SÞ is in 1-1 correspondence with the double coset
AðSÞwAðT Þ ofSn.

� the set of unordered tanglegrams isomorphic to ðfT; Sg; wÞ is
in 1-1 correspondence with equivalence classes of double

cosets AðSÞwAðT Þ where pairs of cosets HwK and Kw�1H

are deemed equivalent.

Note that the actual 1-1 correspondence depends on the mark-
ing of T and S. Some useful facts on cosets [34], [39]:

� any two cosets are either disjoint or identical
� every double coset is a disjoint union of right cosets and a

disjoint union of left cosets
� the number of right cosets of H in HgK is the index

½K : K \ g�1Hg�, and the number of left cosets of K in HgK

is the index ½H : H \ gKg�1�.
Combining these facts with the proposition above:

Proposition 15. The number of bijections from LðT Þ to LðSÞ giving an
ordered tanglegram isomorphic to Y ¼ ðT;w; SÞ is equal to

jAðSÞj½AðT Þ : AðT Þ \ w�1AðSÞw�, or equivalently jAðT Þj½AðSÞ :
AðSÞ \ wAðT Þw�1�.

Example 16. Let T and S be the unique binary unrooted tree with
four leaves. There are two distinct tanglegrams on ðT; SÞ in both
the ordered and unordered cases (Fig. 3). The automorphism
group of either tree, AðT Þ, is the wreath product of S2 by S2,
thus of order 8 (set theoretically Z2 � Z2 � Z2). Marking the
leaves with the integers 1 through 4 such that ð1; 2Þ and ð3; 4Þ are
both sister pairs, G ¼ AðT Þ is generated by fð12Þ; ð34Þ; ð13Þ
ð24Þg � S4.

Fig. 3. The two unrooted binary tanglegrams with four leaves.
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The symmetric group S4 contains 4! ¼ 24 elements. Every
double coset is a disjoint union of single cosets, and G contains
eight elements, therefore the number of elements in a double coset
is a multiple of 8. Moreover, since the double cosets partition S4,
we either have three double cosets (each of eight elements), or two
double cosets (one of eight elements and one of 16 elements), or
one coset (of 24 elements). Takingw ¼ ð23Þ, we calculate:

G \ wGw�1 ¼ fðÞ; ð12Þð34Þ; ð13Þð24Þ; ð14Þð23Þg:

Using the properties of double cosets, we find that the number
of single cosets in the double coset GwG is the index

½G : G \ w�1Gw� ¼ 2. Thus this double coset has 16 elements,
and so there must be two double cosets, corresponding to the
two tanglegrams.

2.4 Symmetries of Tanglegrams

Definition 17. An automorphism of an ordered tanglegram Y is an
automorphism of the graph of Y which maps each tree to itself. An
automorphism of an unordered tanglegram Y is an automorphism of
the graph of Y which preserves the between-leaf edges, so an automor-
phism of an unordered tanglegram either maps each tree to itself or
switches the two trees. If Y is a rooted tanglegram, then an automor-
phism of Y is required to preserve the roots of the two trees.

If the automorphism f : Y ! Y exchanges the two trees, f is
described by a pair of isomorphisms: g1 : T ! S and g2 : S ! T .
For any leaf x of T , the image of a bijective pair ðx;fðxÞÞ must map
to another bijective pair ðg2ðfðxÞÞ; g1ðxÞÞ. This implies that
g1ðxÞ ¼ fðg2ðfðxÞÞÞ, and thus in general that g1 ¼ f � g2 � f. If we
put the same set of distinguishing marks on the leaves of the trees
T and S, we may again consider the bijection f to be an element of
the symmetric group Sn. With these conventions, we have shown
that there exist g1 2 AðT Þ and g2 2 AðT Þ such that g1 ¼ f g2 f as
group elements when there is an automorphism that switches the
two trees. The converse follows from reversing this argument. In
summary:

Proposition 18. If Y is an unordered tanglegram, then there exists an
automorphism of Y that switches the two trees if and only if:

� the trees T and S are isomorphic, and
� AðT Þ \ fAðT Þf 6¼ ;.

On the other hand, if f : Y ! Y is an automorphism which
maps each tree to itself, then f is described by two automorphisms
g : T ! T and h : S ! S satisfying f � g ¼ h � f when restricted to

the leaves, or g ¼ f�1hf as elements of the symmetric group.

Proposition 19. Assume an ordered tanglegram Y ¼ ðT;f; SÞ, or an

unordered tanglegram ðfT; Sg;fÞ. SetH ¼ AðT Þ \ f�1AðT Þf.

1) If Y is ordered or T is not isomorphic to S: AðY Þ ¼ H.
2) If Y is unordered and T is isomorphic to S:

a) if AðT Þ \ fAðT Þf 6¼ ;, then AðY Þ contains H as a sub-
group of index 2.

b) otherwise, AðY Þ ¼ H.

Similar to the case for trees, tanglegram automorphisms are
determined entirely by their action on the leaves of one of the trees.

2.5 Labeled Tanglegrams

Analogous to the concept of a leaf-labeled tree, there is a concept of
a labeled tanglegram.

Definition 20. A labeled tanglegram is a tanglegram along with a
bijective map of the label setX to the leaves of one of the trees.

This is analogous to the definition of a leaf-labeled phylogenetic

tree [40]. The other tree can be considered to be labeled by the com-

position of the labeling with the bijection. Applying this labeling to

both trees and then forgetting the bijection gives a pair of leaf

labeled trees on the same label set, and each such pair of leaf labeled

trees obviously determines a labeled tanglegram. Thus, labeled tan-

glegrams are in one-to-one correspondence with pairs of leaf-

labeled phylogenetic trees. If the tanglegram is ordered, then this is

an ordered pair of trees, and if unordered it is unordered.

It is natural to ask how many distinct labeled n-tanglegrams
have the same underlying ordered or unordered tanglegram. Each
leaf has a distinct label, such that the symmetric group acts freely
on these labels. By the orbit-stabilizer theorem,

Proposition 21. The number of leaf-distinct labelings of a given n-tan-
glegram Y is equal to n!=jAðY Þj.
This is true for ordered and unordered tanglegrams, using their

respective automorphism definitions. For example, there are 12
labelings for the ordered tanglegram ð1; ð2; ð3; 4ÞÞÞ; ððð1; 2Þ; 3Þ; 4Þ;
but only 6 when considered as an unordered tanglegram.

We can use this proposition to obtain the expected value of a
function d on uniformly sampled pairs of labeled trees, but which
is constant on pairs of trees that form the same tanglegram (such as
SPR distance or Ricci-Ollivier curvature). Dropping the denomina-
tor of the number of pairs of trees squared,

X

T1 ;T2

dðT1; T2Þ ¼
X

Y

X

ðT1;T2Þ¼Y

dðT1; T2Þ

¼ dðY Þ
X

Y

fT1; T2 j ðT1; T2Þ ¼ Y gj j

¼
X

Y

dðY Þn!=jAðY Þj;

where we use ðT1; T2Þ ¼ Y to denote that T1 and T2 form tangle-
gram Y and dðY Þ is the common value of d applied to any pair of
trees forming a tanglegram Y .

3 VARIANTS AND SPECIAL CASES

3.1 Multiple Trees

The definition of a tanglegram on two trees can be generalized to a
version on multiple trees.

Definition 22. Given trees T1; . . . ; Tn with the same number of leaves, a
tangled chain on this set of trees is given by a pair of tuples
ððT1; . . . ; TnÞ; ðfijÞi;j21;...;nÞ in which fij : LðTiÞ ! LðTjÞ are bijec-

tions satisfying:

1) fii ¼ 1 for all i;
2) fji ¼ f�1

ij for all i, j;
3) fik ¼ fjk � fij, for all i, j, k.

Fig. 4. Unordered rooted and unrooted tanglegrams formed by two copies of the
same tree but with no automorphism that switches the trees forming each tangle-
gram. These examples show that the second condition of Proposition 18 is not
always satisfied.
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We can also generalize the definition of isomorphism to tangled
chains on n trees.

Definition 23. Two tangled chains on the same list of trees
Y ¼ ððT1; . . . ; TnÞ; ðfijÞi;j21;...;nÞ and Y 0 ¼ ððT1; . . . ; TnÞ; ðf0

ijÞi;j21;...;nÞ
are isomorphic if there exist automorphisms ðgi : Ti ! TiÞi21;...;n and

ðhi : Ti ! TiÞi21;...;n satisfying hj � fij ¼ f0
ij � gi for i; j ¼ 1; . . . ; n.

It is clear that the n2 bijections fij are completely determined by

the n� 1 bijections ff1igi¼2;...;n, since fij ¼ f1j � f�1
1i . With this

observation, we can rephrase the definition of isomorphism above:

Proposition 24. Using the notation above, tangled chains Y1 and Y2 are
isomorphic if and only if there exist automorphisms gi 2 AðTiÞ; i ¼
1; . . . ; n satisfying f0

1i ¼ gi � f1i � g�1
1 .

Alternatively, the automorphisms fij are completely deter-
mined by a sequence f12;f23; . . . ; fk�1 k, motivating use of the term
tangled chains.

3.2 Partitions

Another line of inquiry in computational evolutionary biology con-
cerns species delimitation, which can naturally be phrased in terms
of inference of a partition of labeled objects. In a manner analogous
to phylogenetic trees, researchers use MCMC to explore the poste-
rior on such partitions [13], and comparison of the results can be
performed using distances between the partitions [12]. Similar con-
siderations hold for randomwalks and these distances as described
in the introduction for trees. These partitions can also be thought of
as a certain type of leaf-labeled tree of height two, thus pairs of par-
titions on the same underlying set also give a type of tanglegram.

All of the above conclusions hold for such partition tanglegrams
as well. The automorphisms of a partition are a special case of The-
orem 5. For example, the partition 123 j 456 j 78 has automorphism
group ðS3 oS2Þ �S2.

4 ENUMERATION

Using a computer algebra package such as GAP4 [41] which is able
to enumerate double cosets, and a package such as Sage [42] which
can obtain symmetry groups of graphs, one can apply Proposi-
tion 14 to directly enumerate any type of tanglegram on a given
pair of trees. We have provided code to do so at https://github.
com/matsengrp/tangle, along with a script to plot tanglegrams in
the plane. Although this code is not practical for the purposes of
counting tanglegrams compared to the methods of [24], [25], it is
very useful for work such as [11] in which one needs a complete
list of tanglegrams rather than just a count. This code can work
with the various types of tanglegrams (Fig. 5, Table 1).

Although such direct enumeration procedures were state of the
art when this paper was written, a number of recent papers by
combinatorics experts have appeared solving various counting
problems. We will now review this work. The first such advance
was an elegant exact formula for the total number of binary
ordered rooted tanglegrams on n leaves and for the corresponding
tangled chains [24]. This work also shows that the number of

(binary ordered rooted) tanglegrams is Oðn! 4n n�3Þ. Thus there are
many fewer such tanglegrams than there are pairs of leaf-labeled
trees. Indeed, a simplification of the argument establishing Corol-
lary 8 of [24] shows that the ratio of the number of ordered pairs of
leaf-labeled rooted trees to the number of binary ordered rooted
tanglegrams tn is asymptotically

ð2n� 3Þ!!ð Þ2
tn

	 n!

e1=8
:

Thus by considering tanglegrams rather than pairs of labeled phylo-
genetic trees one obtains an asymptoticallyn! decrease in complexity.

Next Ira Gessel [25] applied a powerful tool in combinatorics
called (coincidentally) the theory of species. In this context, species are
classes of combinatorial objects, and natural operations on those com-
binatorial objects correspond to category-theoretic operations on the
species. For example, the fact that rooted binary trees are themselves
the result of joining rooted binary trees at the root can be translated
into an expression in terms of species. Having such a species expres-
sion in hand leads directly to enumerative theory. This gave further
insight into the formula of [24], aswell as a fastermethod for comput-
ing the number of unordered rooted tanglegrams and both ordered
and unordered unrooted tanglegrams of small size.

Other work has followed up on the procedure for random gen-
eration of tanglegrams from [24]. Konvalinka and Wagner [26]
investigate the shape of random tanglegrams, proving that the two
halves of a random tanglegram look essentially like two indepen-
dently chosen random plane binary trees. �Eric Fusy [27] gives a
more “canonical” proof of a central formula from [24] which leads
to a simplification of the random tanglegram generation algorithm.
Czabarka et al. [28] showed that the number of crossings (e.g., the
minimal number of intersections of the gray lines in Fig. 2) of a ran-
domly sampled tanglegram with n leaves is at least quadratic in n

with high probability.

5 DISCUSSION

Tanglegrams have been an object of study since before DNA
sequences were widely available for the reconstruction of phyloge-
netic trees [44]. Until recently they have been studied before in the
context of co-evolutionary analyses, classically that between a host
and a parasite, a subject of continuing interest [45], [46]. As such,
there has been extensive work on the case in which two rooted
trees are distinguished between one another, as when one tree

Fig. 5. Counts of various types of tanglegrams.

TABLE 1
Enumeration of Binary Tanglegrams of Four Types: Rooted Ordered,
Rooted Unordered, Unrooted Ordered, and Unrooted Unordered

n rooted ord rooted unord unroot ord unroot unord

1 1 1 1 1
2 1 1 1 1
3 2 2 1 1
4 13 10 2 2
5 114 69 4 4
6 1,509 807 31 22
7 25,595 13,048 243 145
8 535,753 269,221 3,532 1,875
9 13,305,590 6,660,455 62,810 31,929

More terms of these sequences can be found on the OEIS [43] as A258620,
A259114, A259115, and A259116.
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represents hosts and one parasites, which we call the ordered
rooted case. Here we have broadened the definition of tanglegrams
by considering a broader class of underlying graphs, including
unordered and/or unrooted tanglegrams.

In this form, tanglegrams formalize statements concerning pairs
of phylogenetic trees on the same leaf set that do not directly make
reference to the labels themselves. Unordered tanglegrams also do
not make reference to the order of the trees.

We observe that many problems in phylogenetic combinatorics

“factor” through a problem on tanglegrams. As such, we believe

tanglegrams to be a worthwhile object of study in phylogenetic

combinatorics, and note that they have already been crucial in an

analysis of the geometry of the subtree-prune-regraft graph [11].

The work reported here provided the first enumerative methods

for tanglegrams, which as described are still useful for obtaining a

complete list of tanglegrams, although they have been greatly sur-

passed by combinatorial methods for the purpose of counting tan-

glegrams. These combinatorial methods have resulted in an

explicit formula for the number of rooted ordered tanglegrams and

improved methods for counting other types of tanglegrams,

although no analogous formula is known for these other cases.

One direction for future work involves considering more gen-

eral classes of graphs. For example, the tanglegram layout problem

has been studied for rooted phylogenetic networks [47]. More gen-

erally, given a natural number n, one can define an n-leaved graph

as a graph U along with n distinguished vertices LðUÞ. Given a nat-

ural number n, one could define a generalized n-tanglegram as a tri-

ple ðU;f; V Þ, where U and V are a pair of n-leaved graphs and f is

a bijection between LðUÞ and LðV Þ. If we require that n-leaved

graph automorphisms preserve the leaf set LðUÞ, we can again

define the leaf automorphism group AðUÞ to be the automorphism

group of U restricted to LðUÞ. If the graphs are such that any graph

automorphism is determined by its action on the leaf set, then gen-

eralized tanglegrams on a given pair of n-leaved graphs U and V

are in one-to-one correspondence with double cosets AðV ÞwAðUÞ
in Sn, and some of the observations given here extend to this new

case. However, it’s not immediately obvious which classes of

graphs considered in computational bioinformatics (e.g., level-k

networks [48]) satisfy this property, or more generally the extent to

which current methods used for enumeration extend to the corre-

sponding notion of tanglegram for these other structures.

Another direction for future work involves returning to the
original motivation for tanglegrams, namely to study coevolving
sets of trees. The recent renewed interest in tanglegrams has devel-
oped powerful new combinatorial tools for analyzing these struc-
tures, and as described in this paper these have already been
useful for studies in theoretical phylogenetics. However, these
tools are not yet obviously helpful for studying coevolution. For
example, the current work on random sampling on tanglegrams
(described above) concerns sampling uniformly from the set of tan-
glegrams on some number of leaves. This does not correspond to a
(nontrivial) forward-time random model of coevolution. One such
model of coevolution could involve a random model of speciation
for a host, and then a model of host-switching for a parasite [14],
[16], [44]. Another would be a model of gene-tree evolution in spe-
cies trees, which are important for inferential algorithms and thus
far have been counted directly using recursive formulae [49]. Such
models will generate more concordant pairs of trees than uniform
sampling of tanglegrams, and even a toy model with this sort of
property might be interesting to analyze and helpful in the area.

Tanglegrams naturally fill a place between two previous appro-
aches to analyzing phylogenetic trees and their distributions,
which involve considering trees with and without leaf labels. For
example, for two tanglegrams to be equivalent to one another, they

must have the same pair of discrete tree structures, but that is not
sufficient; it is sufficient for them to come from an identical pair of
leaf-labeled trees, but this is not necessary. As such, questions on
random tanglegrams are not answered by previous work on sam-
pling random trees, e.g., in the work of Bona and Flajolet [50]. We
have seen a burst of interest in the combinatorics of tanglegrams
since this paper and [24] were posted on preprint servers, but
much work remains to be done.
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