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interrelated processes: mutation, the process generating diver-

sity; selection, the process determining survival or loss of

mutations and substitution, the observed process of evolution

that follows from the first two processes. One major vein of

research has focused on how nucleotide mutation rates

depend on the identity of surrounding nucleotides (reviewed

in [10]; see also [11,12]), but little has been done concerning

other aspects of the process, such as how the substitution

process differs between gene segments.

Along with mutation, selection owing to competition for

antigen binding forms the other key part of the affinity matu-

ration process. Inference of selective pressures in this context

is complicated by nucleotide context-dependent mutation,

leading some authors to proclaim that such selection inference

is not possible [13]. Indeed, if one does not correct for context-

dependent mutation bias, interactions between those motifs

and the genetic code can lead to false-positive identification

of selective pressure. Previous work has developed method-

ology to analyse selection on sequence tracts in this context

(reviewed in §3b), but no methods have yet achieved the goal

of statistical per-residue selection estimates. This has, however,

been recently identified as an important goal [11]. Such selec-

tion estimates could be used to better direct generation of

synthetic libraries of antibodies for high-throughput screening.

Another application would be to the engineering of antibody

Fc regions with specific properties, such as for bispecific mono-

clonal antibodies or antibody-derived fragments, while

preserving overall stability.

The ensemble of germline V, D and J genes that rearrange

to encode antibodies (equivalently: immunoglobulins) are

divided into nested sets. They can first be identified by their

locus: IGH, denoting the heavy chain; IGK, denoting the

kappa light chain; or IGL, denoting the lambda light chain.

Our dataset contains solely the IGH locus, so we will frequently

omit the locus prefix for simplicity. Genes within a locus can be

first subdivided by their segment, which is whether they are a V,

D or J gene. IGHV genes are further divided into subgroups
which share at least 75% nucleotide identity. Genes also have

polymorphisms that are grouped into alleles, which represent

polymorphisms of the gene between individuals [14].

VDJ recombination does not always produce a functional

antibody, such as when the V and J segments are not in the

same reading frame after recombination (an out-of-frame
rearrangement) or when the receptor sequence contains a

premature stop codon. However, each B-cell carries two

copies of the IGH locus, with one on each chromosome. If

the rearrangement on the first locus fails to produce a

viable antibody, the second locus will rearrange; if this

second rearrangement is successful, the antibody encoded

by the second rearrangement will be produced by the cell

[15]. If this second rearrangement does not produce a

viable antibody the cell dies.

When assaying the BCR repertoire through sequencing,

some of the sequences will be from cells for which the first

rearrangement was successful, while others will be from cells

with one productive and one out-of-frame rearrangement.

Although the out-of-frame rearrangements from the second

type of cell do not produce viable antibodies, their DNA gets

sequenced along with the productive rearrangements. As

SHM rarely introduces insertions or deletions (we observe

whole codon insertion deletion events in between 0.013 and

0.014% of memory sequences within templated segments), it

is appropriate to assume that observed frameshifts in
sequences are dominated by out-of-frame rearrangement

events. However, because they are not expressed, but rather

are carried along in cells with a separate functional rearrange-

ment, they have no selective constraints. For this reason, we use

sequences from out-of-frame rearrangements as a proxy for the

neutral mutation process in affinity maturation.

In this paper, we develop modern statistical molecular

evolution methods for the analysis of high-throughput B-cell

sequence data, and then apply them to a very deep short-read

dataset of BCRs. Specifically, we first apply model selection

criteria to identify patterns in the single-nucleotide substitution

process that occurs during affinity maturation and find that

they are similar across individuals but vary significantly

across gene segments. Next, we investigate how substitution

processes vary between V genes and find that the primary

source of variation is whether a sequence produces a functional

receptor. Finally, we develop the first statistical methodology

and corresponding software for comprehensive per-residue

selection estimates for BCRs. We leverage out-of-frame

rearrangements carried along in B cells with a productively

rearranged receptor on the second chromosome to estimate

evolutionary rates under neutrality, thus avoiding difficulties

encountered by previous work in differentiating between selec-

tion and motif-driven mutation. A key part of our method is our

extension of the ‘counting renaissance’ method for selection

inference [16] for non-constant sequencing coverage and a

star-tree phylogeny. Using this modified method, we are able

to efficiently derive a per-residue map of selection on more

than 15 million BCR sequences; we find that selection is domin-

ated by negative selection with patterns that are consistent

among individuals in our study.
2. Results
(a) Substitution model inference and testing
We evaluated the fit of nested models with varying complex-

ity, ranging from a simple model with shared branch lengths

and substitution processes for the three independent seg-

ments of the BCR, to a complex model with completely

separate substitution processes and branch lengths for each

segment (table 1). For the underlying nucleotide substitution

model, we fit a general time-reversible (GTR) nucleotide

model [17] with instantaneous rate matrix Q to subsets of

the data, using 20 000 unique sequences from each individ-

ual. The choice of a stationary and reversible model, rather

than a more general model, was based on the similarity

of base frequencies between the germline and observed

sequences (electronic supplementary material, table S3). We

modelled substitution rate heterogeneity across sites using a

four-category discretized Gamma distribution [18] with

fixed mean 1.0.

We find that the best performing model (denoted trQiGi,

table 2) is one in which the branch length separating a

sequenced BCR from its germline counterpart is estimated

independently for each observed sequence, but that V, D

and J regions differ systematically in their relative amounts

of sequence change (denoted tr). Additionally, this model

uses separate GTR transition matrices for V, D and J regions

(denoted Qi) and uses separate distributions for across-site

rate variation for V, D and J regions (denoted Gi). Looking

across models, both the Akaike information criterion (AIC)

[19] (table 2) and the Bayesian information criterion [20]
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Table 1. Models and model testing results. The models of molecular evolution evaluated, including the number of free parameters introduced in parentheses.

name branch length GTR transition matrix
across-site rate variation
(discrete Gamma)

total
parameters

tiQiGi one branch length per segment

per sequence (n � 3)

one matrix per segment (8 � 3) one distribution per segment (3) 3n þ 27

TrQiGi one branch length per sequence

(n) þ relative rate between segments (2)

one matrix per segment (8 � 3) one distribution per segment (3) n þ 29

trQiGs one branch length per sequence

(n) þ relative rate between segments (2)

one matrix per segment (8 � 3) one shared distribution (1) n þ 27

trQsGs one branch length per sequence

(n) þ relative rate between segments (2)

one shared matrix (8) one shared distribution (1) n þ 11

Table 2. Models and model testing results. Models show identical ranking
across individuals. Columns include the log-likelihood (LogL), number of
degrees of freedom (d.f.), Akaike information criterion (AIC) and difference
of AIC from the top model (DIC).

model LogL d.f. AIC DAIC

A trQiGi 2687 582 20 029 1 415 222 0

trQiGs 2687 980 20 027 1 416 014 793

trQsGs 2700 818 20 009 1 441 654 26 433

tiQiGi 2662 417 60 027 1 444 888 29 666

B trQiGi 2507 980 20 029 1 056 017 0

trQiGs 2508 229 20 027 1 056 512 494

trQsGs 2517 320 20 009 1 074 658 18 641

tiQiGi 2482 963 60 027 1 085 979 29 962

C trQiGi 2563 181 20 029 1 166 420 0

trQiGs 2563 291 20 027 1 166 637 217

trQsGs 2572 530 20 009 1 185 078 18 659

tiQiGi 2539 018 60 027 1 198 090 31 671
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(data not shown) identified the same rank order of support;

this ordering was also identical for each of the three individ-

uals. Other than the tiQiGi model, in which branch length is

estimated independently across gene segments, models are

ranked in terms of decreasing complexity. The finding that

a complex model fits better than simpler models is probably

aided by the large volume of sequence data available.

Next, we fit the best-scoring model (trQiGi) to the full

dataset for each individual. The median distance to germline

was 0.063, 0.030 and 0.039 substitutions per site for individ-

uals A, B and C, respectively. The distribution of branch

lengths appears nearly exponential for individuals B and C,

with many sequences close to germline and few distant

from germline sequences (figure 1). Individual A displayed

a higher substitution load and a non-zero mode. Despite

these differences in evolutionary distance, the relative rate

of substitution between the V, D and J segments for each indi-

vidual was very similar. We note that the sorting procedure

used to separate memory from naive B cells provided

memory cells at approximately 97% purity, so these diver-

gence estimates may be conservative because of low levels

of contamination from the naive repertoire.
Coefficients from the GTR models for the same gene seg-

ment across individuals were quite similar to one another,

while models for different gene segments within an individ-

ual showed striking differences (electronic supplementary

material, figures S1 and S2). However, overall correlations of

GTR parameters between individuals were very high, yielding

correlation coefficients between r ¼ 0.988 and r ¼ 0.994. We

observe an enrichment of transitions relative to transversions

in all segments, as previously described [21].

Next, we compared the evolutionary process between

various groupings of sequences to learn what determines

the characteristics of this evolutionary process. We focused

on the V gene segment, as it had the most coverage in our

dataset, and partitioned the sequences by whether they

were in-frame, then by individual and then by gene sub-

group. We fit the trQiGi model to 1000 sequences from each

set of the partition and calculated the transition probability

matrix (P) associated with the median branch length across

all sequences given an equiprobable starting state. These

matrices were then analysed with a variant of compositional

principal components analysis [22] (see §4 Material and

methods). We find that substitution models are influenced

by in-frame versus out-of-frame sequence status, find no

evidence for models clustering by individual, and see some

limited evidence for clustering by gene subgroup (figure 2).

The Euclidean distance between these transformed discrete

probability distributions and the Hamming distance bet-

ween germline V genes showed significant, but moderate,

correlation (Spearman’s r ¼ 0.20, p , 10215; electronic

supplementary material, figure S3).
(b) Natural selection
The primary challenge for BCR selection inference is that

nucleotide context is known to have a very strong impact on

mutation rates (reviewed in [21]). These context-specific

mutations combined with the structure of the genetic code

can result in extreme dN/dS ratios using the classical definition

that are not attributable to selection. To address this problem,

we infer the selection coefficient v using a non-synonymous–

synonymous ratio which controls for background mutation

rate via out-of-frame sequences (3). We continue the tradition

of calling the selection coefficient v in this context, even

though it is a slightly different definition than previously used.

We apply this method to our dataset results in the first per-

site and per-gene maps quantifying selection in the B-cell
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