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ABSTRACT

In this article we apply some graph-theoretic results to the study of coalescence in a structured population
with migration. The graph is the pattern of migration among subpopulations, or demes, and we use the
theory of random walks on graphs to characterize the ease with which ancestral lineages can traverse the
habitat in a series of migration events. We identify conditions under which the coalescent process in
populations with restricted migration, such that individuals cannot traverse the habitat freely in a single
migration event, nonetheless becomes identical to the coalescent process in the island migration model
in the limit as the number of demes tends to infinity. Specifically, we first note that a sequence of symmet-
ric graphs with Diaconis–Stroock constant bounded above has an unstructured Kingman-type coalescent
in the limit for a sample of size two from two different demes. We then show that circular and toroidal
models with long-range but restricted migration have an upper bound on this constant and so have an
unstructured-migration coalescent in the limit. We investigate the rate of convergence to this limit using
simulations.

A classical dichotomy exists in population genetics
between measurements of gene flow based on the

observed movement of individuals and those based on
patterns of genetic variation (Slatkin 1985). These di-
rect and indirect measurements often disagree, and the
possible explanations for this have been debated ex-
tensively. Here we are concerned with cases in which
direct measurements of individual movement, or in-
tuition based on the mobility of organisms, seem to
predict that a correlation between genetic distance and
geographic distance should be observed but indirect
measurements of gene flow show no such correlation.
We offer a new explanation for this, based on a sur-
prising mathematical result. It contrasts with the prevail-
ing notion, which was articulated recently by Ouborg

et al. (1999, p. 559) in a review of genetic studies of dis-
persal in plants: ‘‘If no isolation by distance is detected,
then either dispersal is not distance dependent (which
is, apart from very small spatial scales, unlikely in plants)
or no equilibrium exists.’’ The statement that no equi-
librium exists means that changes in population size or
structure must have occurred in the recent past.

Observations of the kind we consider do not abound
in the literature, but there are some. Bohonak (1999)
found significant structure among demes of water mites
in the genus Arrenurus in North America, but found no
correlation between genetic distance and geographic
distance. While genetic diversity in these species is likely

to be strongly influenced by postglacial population
expansion, one of them (Arrenurus birgei) was suggested
to be at or near migration-drift equilibrium. Durand

et al. (2000) found low but significant population struc-
ture with no detectable isolation by distance in the widely
distributed and long-term demographically stable Afri-
can savanna grass species Hyparrhenia diplandra, whose
dispersal ability is apparently low. Vandewoestijne et al.
(1999) observed a high level of genetic diversity but
a low level of structure, and no correlation between
geographic distance and genetic distance, in the butter-
fly Aglais urticae for which very long distance dispersal
is considered unlikely. A fourth example is Strand et al.
(1996) who found high diversity and a high degree of
population structure among local populations of plants
in the genus Aquilegia in the southwestern United
States and adjacent parts of Mexico and used the lack
of a correlation between genetic distance and geogra-
phic distance to argue for a history of isolation from a
common ancestral population without subsequent gene
flow.

We do not claim that historical events such as pop-
ulation expansion or the splitting of populations are not
important factors. On the contrary, for many species
these may be the most significant determinants of cur-
rent patterns of diversity. We point out only that not all
patterns of restricted migration are expected to pro-
duce a pattern of isolation by distance.

The more typical situation, in which there is some
correlation between genetic distance and geographic dis-
tance, is easily explained. The movement of individuals
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or the dispersal of gametes is usually local, and the birth
and death of individuals in a population of this sort
establish a pattern where relatedness tends to decrease
with the distance between organisms. When DNA se-
quences or other genetic data are sampled from many
individuals separated by different distances, a pattern of
isolation by distance will be observed (Wright 1943).
The models most commonly invoked to explain the
correlation between genetic distance and geographic
distance are the one-dimensional and two-dimensional
stepping-stone models (Kimura 1953; Kimura and
Weiss 1964; Weiss and Kimura 1965; Maruyama 1970,
1971; Sawyer1976). In these models, the demes that make
up the population are arrayed either on a line or on a
two-dimensional lattice, and migration occurs only be-
tween neighboring demes.

Wright’s island model and its variants (Wright 1931;
Latter 1973; Maruyama 1974) are the only equilib-
rium migration models that have been invoked to ex-
plain a lack of correlation between genetic distance and
geographic distance. In the island model, a single migra-
tion event is equally likely to move the individual or
gamete to any other deme in the population. At equilib-
rium, a sample taken from a single deme will show less
genetic variation than a sample taken from more than
one deme, but there will be no isolation by distance.
Although the assumption of island-model migration is
unrealistic for most species, estimates of gene flow are
typically made under this assumption. Recent work has
shown that the coalescent process, which is the retro-
spective process by which contemporary samples of ge-
netic data trace back through ancestral lineages to reach
common ancestors, is relatively simple in the island
model when the number of demes is very large (Wakeley

1998). It is characterized by a slow process for between-
deme samples, which is a Kingman-type coalescent pro-
cess (Kingman 1982), and a fast process for within-deme
samples, during which they either coalesce or end up in
different demes (and then enter the slow process).

Charlesworth et al. (2003) suggested that a similar
two-phase coalescent process, in which the recent
ancestry of a sample depends on the sample locations
but the memory of these locations fades quickly as line-
ages trace their genealogy farther into the past, should
be observed in the two-dimensional stepping-stone
model. Some recent theoretical work supports this.
Wilkins (2004) identified this sort of behavior in an
analysis of coalescence in a continuous two-dimensional
habitat with symmetric Gaussian dispersal, although in
that case the ancestral process is not necessarily an un-
structured coalescent. The assumptions of the model we
describe below are similar in spirit to those of Wilkins

(2004) in that both allow individuals to migrate to a
potentially very large number of locations. However,
they differ in that our model is a discrete-deme model
and does not assume a particular form for the distribu-
tion of dispersal distances.

Following an earlier article by Cox and Durrett

(2002) and making use of some special properties of
random walks in two dimensions, Zähle et al. (2005)
found a two-phase coalescent process in a two-dimensional
stepping-stone model with direct migration possible be-
tween demes separated by K steps or fewer along the
lattice. While on the surface their model and results
appear similar to ours, there are important differences.
We seek an ancestral limit process that approximates the
behavior of a population composed of very many demes.
In comparison to Zähle et al. (2005), who consider K
to be a fixed, relatively small number compared to the
total number of demes in the population, we assume
that K is very large, on the order of the number of
demes. The consequence of this is that the behavior of
our model converges to that of the island model while
theirs continues to predict a pattern of isolation by
distance even in the limit as the number of demes tends
to infinity.

MODEL AND RESULTS

Our model consists of D demes, each containing N
haploid individuals. We make use of the framework of
graph theory, so we represent each deme as a node on a
graph, where the edges are potential single-step migra-
tion paths. Any discrete-deme model with migration can
be represented in this way. We restrict ourselves to the
case of vertex-transitive graphs, which we simply call
symmetric graphs. These graphs are homogeneous in
the sense that they look the same from every node.
Migration patterns of this sort have been called ‘‘iso-
tropic’’ in the population genetics literature (Strobeck
1987). An example is given in Figure 1. Clearly, the
circular and toroidal stepping-stone models are sym-
metric graphs. Trivially, the island model, which is
represented by the complete graph, is also symmetric.
Each node of a symmetric graph contacts the same num-
ber of edges. The number of edges that a single node
contacts is called the degree of the symmetric graph and
is denoted d. Because each edge connects two nodes, the
total number of edges in the graph is equal to dD/2.

We assume a continuous-time Moran model of repro-
duction in which all variation is selectively neutral. Each
of the ND individuals in the population dies at some rate
l per unit time. When an individual is chosen to die, it
is replaced by the offspring of an individual chosen
uniformly at random either from the same deme, with
probability 1 � m, or from one of the d demes it is
connected to in the graph, with probability m. In the
first case, the same individual can be chosen to repro-
duce and to die. Consider the ancestry of a sample of
size two in this model. When viewed backward in time,
the forward-time process of migration and reproduc-
tion becomes a coalescing random walk of ancestral
lineages on the graph, with the caveat that the two

702 F. A. Matsen and J. Wakeley



ancestral lineages can occupy the same node without coa-
lescing. The assumption of Moran-type reproduction
simplifies the analysis somewhat because only one line-
age can move at a time. Later, we consider the case of
Wright–Fisherreproductionand the possibility that a sam-
ple of size greater than two is taken from the population.

Let the random variable Xij, i, j 2 f1, 2, . . . , Dg, be the
time back to the most recent common ancestor for a
pair of samples taken from deme i and deme j. We first
consider the expected value E[Xij]. Looking back in
time, each lineage encounters its birth with rate l and
is either a migrant or a nonmigrant, with probabilities
m and 1 � m, respectively. By conditioning on the first
event in the continuous-time Markov process that
describes the ancestry of a sample, we have

E ½Xii � ¼
1

2l
1 ð1 � mÞ 1 � 1

N

� �
E ½Xii �1m

X
j2Vi

1

d
E ½Xij �;

ð1Þ

in which Vi is the set of labels of the d demes accessible
by a single migration event from deme i. The terms on
the right in Equation 1 are, from left to right: the waiting
time for one or the other lineage to be the offspring in a
reproduction event; the probability that the event is
neither a migration event nor a coalescent event times
the expected time given this; and the probability that
the event is a migration event to a particular deme j
times the expected time given this, summed over all j.

Because the graph is symmetric and every deme has
the same size, E[Xii] ¼ E[Xjj] for all i and j. The main
result we present below is that, for certain types of
graphs, when D is large, the time for a pair of lineages
sampled in distinct demes to enter the same deme does
not depend on the initial choice of demes. It follows that
the distribution of Xij, i 6¼ j, does not depend on i and j in
the limit as D tends to infinity. Now, let us define t0 to be
the average time for the pair of lineages to enter the
same deme, thus giving them a chance to coalesce. For
the expected value of Xij, we can write

E ½Xij � � t0 1 1 � 1

N

� �
E ½Xii �: ð2Þ

This says that the expected coalescence time for a
sample of size two from two different demes is equal
to the time t0 plus the probability they do not immedi-
ately coalesce when they enter the same deme times the
expected coalescence time given that they are now in
the same deme. Slatkin (1987) and Strobeck (1987)
showed that the expected within-deme pairwise co-
alescence time under symmetric migration is the same
as the expected pairwise coalescence time in a single,
panmictic population of the same total size. In our
model, this is E[Xii]¼ND/(2l). Substituting Equation 2
into Equation 1 and using E[Xii] ¼ ND/(2l) to then
solve for t0 gives t0 � D/(2lm), where the approxima-
tion is valid if D is large. Using Equation 2 again, we
obtain

E ½Xij � �
ND

2l
11

1 � m

Nm

� �
; ð3Þ

which is the same as the result for the island model with
a large number of demes and Moran-type reproduction;
e.g., see Slade and Wakeley (2005).

We use the Diaconis–Stroock bound (Diaconis and
Stroock 1991) to prove that the limit (D / ‘) dis-
tribution of Xij, i 6¼ j, does not depend on i and j for
certain types of graphs. The crucial fact of the analysis is
that it is possible for a random walk on a graph to have a
finite ‘‘mixing time’’ even when the number of nodes
of the graph goes to infinity. The mixing time, denoted
t2, quantifies the amount of time it takes for a Markov
chain to near the stationary distribution. If the mixing
time is short compared to the amount of time before a
coalescent event, then the Markov chain acts close to
as if it had been started with the stationary distribu-
tion. In particular, the initial location of the samples is
irrelevant.

A bound for the mixing time is provided by the
Diaconis–Stroock bound. To apply this theory, one
chooses a ‘‘distinguished set of paths’’ G connecting
every ordered pair of nodes in the state space. For this G
one finds L, which is the length of the longest path, and
B, the maximum number of paths going through a given
edge, to gain the bound for our symmetric graph:

t2 #
LBd

D
:

This equation is a special case of Corollary 1 of Diaconis

and Stroock (1991). In the cases of interest to us, we
will be able to find a set of paths that have maximal path
length L bounded above and the maximal number of
paths going through an edge B will be bounded above.
The degree d is always less than or equal to the number
of nodes D. Thus, t2 is bounded above by a constant; we
call such a graph ‘‘fast mixing.’’ In biological terms we
might think of this as saying that spatial structure is
unimportant in the limit if, first, it is possible to get
across the space in a small number of migration events,

Figure 1.—A simple symmetric graph.
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and, second, there are no narrow channels through
which migration must occur. We also note that this bound
is the simplest example of the paths technique; further
development can be found in Saloff-Coste (1997).

Using this mixing-time bound we can show using a
theorem of Aldous (1989) that the distribution of the
time for any pair of lineages to enter the same deme
converges to an exponential distribution, with mean
equal to one when time is rescaled appropriately. The
scaling is by the average time t0, introduced above, and
part of the proof is to show that t0 converges to D/(2lm)
as D increases. The details of the proof are given in the
appendix. Briefly, we note that the random walk of two
lineages on a symmetric graph can be treated by fixing
the position of one of them and letting the other move
with twice the rate, in this case 2lm. We then label the
nodes of the graph so that deme one is the fixed
position of the first lineage and define Yi to be the time
for the moving lineage to reach deme one given that it
starts in deme i. We use Hi to denote the expected value
E[Yi]. The overall average is t0 ¼ ð1=DÞ

PD
i¼2 Hi . The

interesting result is that, on a fast-mixing graph, the
distribution of Yi/t0 converges to an exponential dis-
tribution with mean equal to one in the limit as D tends
to infinity.

Figure 2 illustrates the behavior of the scaled ex-
pected times Hi/t0 for a series of graphs like the one
in Figure 1. To produce Figure 2, we calculated Hi

analytically using the spectral formula for hitting times
(Equation 9) and the properties of circulant matrices
(Davis 1979). All Hi/t0 should be equal to one in the
limit we consider. Figure 2 shows Hi/t0 for a series of
circular graphs with increasing D, where each node is
connected to all nodes that are within one-tenth of the
graph away from it. This corresponds to a species in
which an individual can move to any deme that is within
10% of the total distance around its circular habitat.
When the number of demes is small there is a substantial
difference between samples that are close together and

those that are far apart. However, when the number of
demes becomes large this difference decreases. As might
be expected, there is also a visible jump at i=D ¼ 1

10, so
that samples within migration range of each other have
shorter times than more distant samples, but the mag-
nitude of this jump becomes negligible in the limit as D
tends to infinity.

The graphs in Figures 1 and 2 can be thought of as
extensions of the familiar circular stepping-stone model
(Kimura and Weiss 1964), but where we have added
some extra branches representing longer-range migra-
tion. We also consider a toroidal model, which is the
corresponding extension of the two-dimensional step-
ping-stone model. Conditions under which the toroidal
model will have mixing time bounded above, and will
thus fall under our convergence result, are identified in
the appendix. In both the circular case and the toroidal
case, it is sufficient that a migrant can migrate freely
within a neighborhood of nonvanishing size (measured
as a fraction of the total number of demes) as D tends
to infinity. The neighborhood need not be large, so
migration is restricted even in the limit model. For
example, in Figures 1 and 2 it will take at least 10 migra-
tion steps to move once around the habitat.

We can now return to the coalescence time, Xij, for
two samples starting in demes i and j on a fast-mixing
graph. In the limit as D tends to infinity, we have shown
that the waiting time for the two lineages to enter the
same deme does not depend on i and j and is ex-
ponentially distributed with mean equal to one when
time is rescaled by the factor D/(2lm). When they first
enter the same deme, there is a chance 1/N that the two
lineages coalesce. If they do not coalesce immediately
(probability 1� 1/N), then after some number of repro-
duction events either they will coalesce, with probability

2lð1 � mÞ=N

2lm 1 2lð1 � mÞ=N
¼ 1 � m

Nm 1 1 � m
; ð4Þ

or one of the lineages will migrate out of the deme. The
time it takes for one or the other of these events to occur
will have mean equal to N/(2l(Nm 1 1 � m)), and when
D is large this will be much less than the average time
D/(2lm) for the pair to meet in the same deme.

Thus, we can appeal to the ‘‘separation of timescales’’
between this within-deme process and the process of
migration movement of lineages across the population,
treated above and in the appendix. We can show that
the distribution of Xij in the limit is also exponential
with mean equal to one when it is rescaled appropri-
ately. Overall, the probability of coalescence given that
the two lineages enter the same deme is equal to

1

N
1 1 � 1

N

� �
1 � m

Nm 1 1 � m
¼ 1

Nm 1 1 � m
: ð5Þ

Again, if they do not coalesce, then one or the other
lineage will migrate to a different deme. The number of

Figure 2.—Hi/t0 for a random walk on a graph that has
complete connections out to distance D/10. The x-axis is
the number of nodes D. The y-axis is the scaled distance be-
tween node i and node 1.
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times the two lineages will have to repeat this process
of entering the same deme and having a chance to co-
alesce before they finally do coalesce will be geometri-
cally distributed with parameters equal to Equation 5.
Möhle (1998) has developed a formal method for
treating Markov processes with two timescales, which
applies here, but also admits more generality.

Our result that the time for a pair of lineages to enter
the same deme is exponentially distributed requires that
time is rescaled by t0, which we recall converges to D/
(2lm) as D tends to infinity. On this timescale and as
D / ‘, the durations of the periods when the lineages
are together in the same deme become negligible.
Therefore the distribution of Xij2lm/D is given by the
sum of a geometric number of exponential random
variables that can be shown, e.g., as in Wakeley (1999),
to be exponential with mean equal to Nm 1 1 � m. If we
rescale time again, by this new factor, so that our new
unit of time is

Ne :¼ D

2lm
ðNm 1 1 � mÞ ¼ ND

2l
11

1 � m

Nm

� �
ð6Þ

of the original units, then the limit distribution of the
scaled coalescence time Tij ¼ Xij/Ne will be exponential
with mean equal to one. Note that our ‘‘effective pop-
ulation size’’ Ne is identical to the expression for E[Xij]
given in Equation 3.

We have followed Wakeley (1999) in defining Ne so
that the time-rescaled coalescent process for a sample of
lineages from different demes is given by Kingman’s
coalescent. Samples from the same deme will undergo
an instantaneous process of migration and coalescence,
called the ‘‘scattering phase’’ in Wakeley (1999). A pair
of lineages sampled (without replacement) from a sin-
gle deme will coalesce with probability given by Equa-
tion 4. If they do not coalesce, then one or the other will
migrate and they will enter the Kingman coalescent, or
‘‘collecting phase.’’ The difference in the distributions
of coalescence times for within-deme vs. between deme
samples can be seen in their respective cumulative
distribution functions (CDFs):

PfTii , tg ¼ 1 � Nm

Nm 1 1 � m
e�t ð7Þ

PfTij , tg ¼ 1 � e�t : ð8Þ

In the limit model, single-deme samples of size two have
a probability mass of (1 � m)/(Nm 1 1 � m) at t ¼ 0,
followed by the usual exponential decay for t . 0.

We used simulations to assess the convergence of the
rescaled coalescence time Xij/Ne to the exponential
distribution. The source code of a program that
simulates the exact model is available from the authors
upon request. Some results are shown in Figure 3, which
compares the CDF of Xij/Ne in simulations to the limit

results given in Equations 7 and 8, for a series of in-
creasing D. Figure 3 presents results for samples of size
two: (a) from the same deme, (b) from adjacent demes,
and (c) from maximally distant demes. The demes
were arrayed on an l 3 l torus and we allowed direct
migration to any deme within l/16 steps from the cur-
rent deme in either dimension. When D ¼ l 2 is large,
this corresponds to a species in which individuals can

Figure 3.—Convergence to the limit distributions on the
torus for a sample of size two: (a) from the same deme, (b)
from adjacent demes, and (c) from maximally distant demes.
The dotted line in a represents Equation 7, and the dotted
lines in b and c represent Equation 8. Other lines represent
the CDFs of pairwise coalescence times on the l 3 l torus de-
scribed in the text, for l ¼ 16, 32, 64, and 128. The solid lines
farthest away from the dotted line are for l ¼ 16; as l increases
the solid lines move toward the dotted one. The simulations
counted the number of times Xij/Ne fell in each of 100 bins of
increasing width between 0 and 20, so that an exponential
random variable with mean one would have an equal proba-
bility of falling in each bin and its CDF would fall along the
diagonal. Additional simulations were done to obtain an accu-
rate picture of the shape of the curves in a for small values of
Xij/Ne.
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migrate to any deme in an area equal to one sixty-fourth,
or �1.56%, of the total, two-dimensional, species range.
We set l¼ 1, N¼ 50, and m¼ 0.02 and considered l¼ 16,
32, 62, and 128. As the number of demes increases, the
CDFs for adjacent and maximally distant samples
converge to that of the same exponential distribution,
with mean equal to one and given by Equation 8. The
CDF for a single-deme sample converges to Equation 7.
The theory presented above and in the appendix

assures convergence in the limit, but Figure 3 illustrates
that the limit result can be approximately true even
when D is only moderately large.

DISCUSSION

We have shown that the distribution of coalescence
times for a sample of size two from a subdivided pop-
ulation with restricted migration may not depend on
the distance between sampling locations. This result
holds in the limit as the number of demes tends to
infinity and with some restrictions on the pattern of
migration. Samples from the same deme differ from
samples from different demes—on average having
shorter coalescence times—but in the limit this will be
the only evidence of subdivision. Thus, although migra-
tion may be fairly restricted, the usual pattern of
isolation by distance may not be observed. We suspect
that this will be important for only a limited number of
species, but we hope that the result adds something to
the ongoing debate about the role of gene flow in
structuring genetic variation.

Our result is similar to other recent results (Wakeley

and Aliacar 2001) and can be understood with reference
to the strong-migration limit of Nagylaki (1980), which
was taken up in a genealogical setting by Notohara

(1993). In particular, when the number of demes is large
in our model, the memory of the original sampling
locations of lineages is lost quickly in comparison to the
rate at which their common ancestor is reached. For this
reason, it seems reasonable to speculate that the same
kind of result will hold for populations with asymmetric
migration patterns (e.g., populations with edges), pop-
ulations with different migration rates between different
pairs of demes, and populations with other kinds of
reproduction (e.g., Wright–Fisher reproduction), as well
as for samples of size greater than two.

In fact, we have verified the last two of these pre-
dictions using simulations, although we do not pres-
ent the results. However, we note that the rate of
convergence to Kingman’s result (as D increases) for
the CDF of time to the first coalescent in the sample
decreases as the sample size increases. This is to be
expected since the validity of Kingman’s coalescent de-
pends roughly on the square of the sample size being
much smaller than the effective size of the population
(Kingman 1982). Of course, studies of isolation by dis-
tance are nearly always based on pairwise comparisons

between samples, and our results for samples of size two
hold marginally for pairs in samples of any size.
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abilities de Saint-Flour XXVI, 1996 (Lecture Notes in Mathematics,
Vol. 1665), edited by E. Gine, G. R. Grimmett and L. Saloff-
Coste. Springer-Verlag, Berlin.

Sawyer, S. A., 1976 Results for the stepping stone model for migra-
tion in population genetics. Ann. Appl. Probab. 4: 699–728.

Slade, P. F., and J. Wakeley, 2005 The structured ancestral selec-
tion graph and the many-demes limit. Genetics 169: 1117–1131.

Slatkin, M., 1985 Gene flow in natural populations. Annu. Rev.
Ecol. Syst. 16: 393–430.

Slatkin, M., 1987 The average number of sites separating DNA se-
quences drawn from a subdivided population. Theor. Popul.
Biol. 32: 42–49.

706 F. A. Matsen and J. Wakeley



Strand, A. E., B. G. Milligan and C. M. Pruitt, 1996 Are popula-
tions islands? Analysis of chloroplast DNA variation in Aquilegia.
Evolution 50: 1822–1829.

Strobeck, C., 1987 Average number of nucleotide differences in a
sample from a single subpopulation: a test for population sub-
division. Genetics 117: 149–153.
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APPENDIX

Here we present and prove the technical results for
this article. For simplicity we consider random walks
with rate one rather than walks with rate 2lm as in the
main text. The expectations of the time to enter the
same deme (the hitting time) scale appropriately; for
example, if a given hitting time is H for the rate one
case, the corresponding hitting time would be H/(2lm)
in the previously considered case. Also, to conform with
the large and well-established literature on graph theory
and random processes on graphs, we use n to denote the
number of nodes of a graph rather than D, which is used
in the main text.

First we recall some basic facts about random walks on
graphs. Let M denote the Markov transition matrix
for the random walk on our symmetric graph. M is
symmetric and thus can be diagonalized with an orthog-
onal matrix V with entries vij. Let us order the eigen-
values 1 ¼ l1 . l2 $ � � �$ ln $ –1. The eigenvalues are
bounded above by one in absolute value because large
powers of the Markov matrix are bounded.

There is a nice formula for expected hitting times in
terms of these eigenvalues and vectors:

Hi ¼ n
X
k$2

1

1 � lk
ðv2

1k � vikv1kÞ: ð9Þ

Using the orthogonality of the matrix V gives

t0 ¼
X
k$2

1

1 � lk
; ð10Þ

where t0 is again the average hitting time. For proofs see,
for example, Lovasz (1993), section 3. The aforemen-

tioned mixing time is defined in terms of the second
largest eigenvalue: t2 ¼ (1 � l2)�1. As mentioned above,
the mixing time quantifies the amount of time the chain
will take to near the stationary distribution. Under our
hypotheses the mixing time is bounded above, which is
the crucial fact that allows our conclusions.

The Diaconis–Stroock bound is found in the litera-
ture as Proposition 1 of (Diaconis and Stroock 1991):

Theorem 1.

l2 # 1 � 1=k; ð11Þ

where k is a constant that contains information about a
chosen set of ‘‘distinguished allowable paths’’ G con-
necting every pair of states in the Markov chain. In the
case of a random walk on a symmetric graph, G is simply
a chosen set of paths on the graph connecting every pair
of nodes. Furthermore, as a special case of Corollary 1
of Diaconis and Stroock (1991), k can be bounded
above by LBd/n, where L is the longest path in G and B
is the maximal number of paths that traverse a given
edge e. As before, d is the degree and n is the number of
nodes in the graph.

This method gives an upper bound for l2 that is
independent of n so we can apply the following prop-
osition, proven below.

Proposition 1. Let G1, G2, . . . , be a sequence of sym-
metric graphs where Gn has at least n nodes. Assume that

l2ðGnÞ#D ð12Þ

for some 0 , D , 1. Assume that i(n) is a sequence of nodes
such that i(1) is a node of G1, i(2) is a node of G2, and so on.
Then the distribution of Yi(n)/t0 converges to the exponential
distribution with mean 1 in the limit of n going to infinity.

Putting these two together, an upper bound for k that
is independent of n will give the exponential conver-
gence result. The following proposition gives such a
bound for the torus with uniform migration across a
given fraction of the habitat:

Proposition 2. Define Gu,l to be an l 3 l toroidal lattice
with an additional edge between any two nodes whose hori-
zontal and vertical distance is less #Øulø 1 1. A set of distin-
guished paths G on Gu,l exists such that k is bounded above by a
number that depends only on u.

Note that the hypotheses of the proposition are cer-
tainly satisfied for large l 3 l tori that have connections
between any two nodes that are within rl steps of each
other along the lattice, where r is some fixed fraction
and is greater than zero. We also note that an upper
bound can be proven for the one-dimensional cyclic
population model with edges connecting any two nodes
within a fixed fraction of the circle; this version is easier
to prove and we omit its proof.
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Now we prove the propositions, starting with Propo-
sition 1. By the ordering of the eigenvalues the hypoth-
esis implies that for any k . 1

1

1 � lk
#

1

1 � D
:

Then we recall that for vertex-transitive chains (see
Proposition 5 of Aldous 1989)

Hi $
n

2

for i 6¼ 1. Thus

t0 $
n � 1

2
:

We apply this fact as follows,

jHi=t0 � 1j ¼ 1

t0
jHi � t0j

#
2

n � 1
jHi � t0j

¼ 2

n � 1

����
X
k$2

1

1 � lk
ðnðv2

1k � vikv1kÞ � 1Þ
����

#
2n

ðn � 1Þð1 � DÞ

����
X
k$2

v2
1k � vikv1k �

1

n

� �����
¼ 2n

ðn � 1Þð1 � DÞ

����1n � v2
11 1 vi1v11

����;
where the last step is via the definition of an orthogonal
matrix. The entry v11 is the first coordinate of the first
eigenvector, which is scaled to have norm one. As the
first eigenvector corresponds to the stationary distribu-
tion, which is in this case the uniform distribution, v11 ¼
n�1/2. Therefore this upper bound goes to zero.

The following fact is a case of Proposition 8 of Aldous
(1989):

Theorem 2. Consider a sequence of vertex-transitive graphs
such that

1. The number of nodes goes to infinity.
2. t2=t0/0.
3. Hi=t0/1 for any sequence of i’s.

Then the distribution of Yi/t0 converges to the exponential
distribution with mean one for any i.

Under the hypotheses of our Proposition 1, l2 is
bounded away from 1 and therefore t2 is bounded
above. Clearly t0 goes to infinity and by the above cal-
culation Hi/t0 converges to one; therefore we can apply
Aldous’ theorem to prove Proposition 1.

Now we prove Proposition 2. Recall that we need to
find a set of distinguished paths G such that L and B are
bounded by fixed constants, where again L is the
maximum length of any path in G, and B is the maximal
number of paths in G going through a given edge.

We set S¼ Øu�1ø. It is easy to see that we can travel from
any node to any other node along existing edges in at
most S steps, as

Øl=2ø# Øu�1ø � Øulø# S � ðØulø1 1Þ:

Therefore we can choose G to contain paths of maximal
length S, which will make L bounded.

In fact, we choose paths in G to be paths of exactly
length S as often as possible. To specify the class of paths,
we pick a node p and then choose a set of paths Gp from
p to all of the points of the torus. We then translate this
set of paths around the torus to get a complete set of
paths G.

To describe Gp, set up coordinates on the torus such
that p is at the point (Øl/2ø, Øl/2ø). Now, for any point q
on the torus, integers a and b exist such that

px 1 aS # qx # px 1 ða 1 1ÞS
py 1 bS # qy # py 1 ðb 1 1ÞS :

We note that by hypothesis an edge will exist between
any two nodes that are jaj 1 1 or less apart in the
horizontal direction and jbj 1 1 apart or less in the
vertical direction. For example, when l is sufficiently
large,

jaj1 1 ¼ Øjpx � qx j
S ø# Øu � ðl=21 1Þø# Øul 1 1ø:

Therefore we choose a path from p to q using edges
going only a or a 1 1 in the horizontal direction and
only b or b 1 1 in the vertical direction. This path will be
at most S steps long. We repeat this process for all q
to construct Gp and then translate to construct the whole
of G.

Now we need to show that B is bounded above by a
constant independent of l. Pick an edge e traversed by a
path g and assume that it goes a steps in the horizontal
direction and b steps in the vertical direction. By the
above construction the start p and the terminus of the
path q will satisfy the inequalities

px 1 ða � 1ÞS , qx , px 1 ða 1 1ÞS
py 1 ðb � 1ÞS , qy , py 1 ðb 1 1ÞS :

Note that in a given Gp there can be at most 4S2 possible
terminal points in this region. Therefore there are at
most 4S2 paths in Gp that contain the edge e.

Now, how many translates of paths in Gp contain e? Let
us denote by E(Gp9) the union of edges traversed by
paths in Gp9. Note that if e 2 E(Gp9), then we have made
a choice of e9 2 E(Gp) to map onto e. This choice
determines the base of translation p9 uniquely. Because
each path is at most S edges long, and there are at most
4S2 paths, there are at most 4S3 choices of such an e9 and
therefore at most 4S3 possible translations. Each choice
of translation has at most 4S2 paths traversing e; there-
fore, B is at most 16S5. This proves Proposition 2.
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