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Abstract.—This article presents a new way to quantify the descriptive ability of tree shape statistics. Where before, tree
shape statistics were chosen by their ability to distinguish between macroevolutionary models, the resolution presented in
this paper quantifies the ability of a statistic to differentiate between similar and different trees. This is termed the geometric
approach to differentiate it from the model-based approach previously explored. A distinct advantage of this perspective
is that it allows evaluation of multiple tree shape statistics describing different aspects of tree shape. After developing
the methodology, it is applied here to make specific recommendations for a suite of three statistics that may prove useful
in applications. The article ends with an application of the statistics to clarify the impact of taxa omission on tree shape.
[Macroevolutionary models; multidimensional scaling; nearest neighbor interchange metric; phylogenetic tree shape; tree
estimation bias.]

The analysis of phylogenetic tree shape provides one
way of understanding the forces guiding macroevolu-
tion and the biases of tree reconstruction methodol-
ogy. Although it has been a subject of study for many
years, a recent editorial in this journal (Simon and Page,
2005) hints that finding the forces guiding tree shape
is a long-term challenge which still has not been met.
Joe Felsenstein (2004) concludes the chapter on tree
shape methodology in his recent book with the simple
phrase “[c]learly this literature is in its early days.” In-
deed, tree shape is still a challenge, and an important
one. A complete understanding would help resolve im-
portant questions in biology such as the roles of adap-
tive radiation and environmental change in generating
diversity. Tree shape also poses difficult issues of its own,
such as the impact of missing or extinct taxa on the un-
derstanding of historical biodiversity. Not only are many
fundamental questions left unanswered, but the area is
ripe for progress: the large number and size of contem-
porary phylogenies form a fantastic corpus on which
macroevolutionary hypotheses can be tested.

In order to use phylogenetic tree shape as a tool, meth-
ods are needed to measure and quantify aspects of tree
shape. Almost all work to this day has been done with
measures of tree “balance,” which is the degree to which
two sister taxa are of the same or different size. A major
vein of research has been to compare the balance of trees
created from data to trees produced by one or another
null model (Savage, 1983; Guyer and Slowinski, 1991,
1993; Stam, 2002). Kirkpatrick and Slatkin (1993), in one
of the early papers in the area, quantified the power of
different measures of tree balance in distinguishing be-
tween distributions on tree shapes. The two models are
extremely simple: one, called the Yule or ERM model,
develops a tree by starting with a single species and
then choosing uniformly among species to bifurcate. The
other, called the PDA model, is simply the distribution
on tree shapes induced by the uniform distribution on
labeled trees.

Studies have shown that most trees created from data
are less balanced than would be expected from the ERM
model, yet are more balanced than would be expected
from the PDA model (Mooers, 1995; Mooers and Heard,

1997; Purvis and Agapow, 2002). Models of increasing so-
phistication have appeared, attempting to re-create this
observed pattern of tree shape observed in nature. For
example, Heard (1996) found that speciation rate varia-
tion among lineages can lead to imbalanced trees. Losos
and Adler (1995) found that short “refractory periods”—
periods before a new species can speciate again—led
to more balanced trees, whereas Rogers (1996) found
that very long refractory periods led to less balanced
trees. Aldous (1995, 2001) was the first to propose a
(nonevolutionary) model that interpolated between the
ERM and the PDA models. More recently, Steel and
McKenzie (2001) and Pinelis (2003) have developed evo-
lutionary models that also interpolate. Another inter-
esting contribution to this area is the “alpha model” of
Ford (2005).

With these models, one could presumably arrange pa-
rameters to correctly fit the observed pattern of imbal-
ance as reported by a given statistic. But is that really
enough? What if other aspects of the tree shape, not mea-
sured by the statistic, differ considerably? After all, any
single statistic is a one-dimensional summary of a very
complex set of data. One might follow the suggestion
of Agapow and Purvis (2002) and use two different bal-
ance statistics that measure balance in different parts of
the tree, but this paper attempts to present a more direct
approach.

The only proposal made in the literature that has the
potential to encapsulate lots of information about the
shape of a tree has been made by Aldous (2001). He sug-
gests first constructing a scatterplot of the interior nodes,
where the x coordinate is the size of the subclade sub-
tended by that interior node, and the y coordinate is the
size of the smaller daughter clade. The proposal is then
to perform nonlinear median regression on the log-log
version of this scatter plot and then use the fitted func-
tion as a descriptor of tree shape. The log-log scatter plot
will be called the “Aldous scatterplot” in this paper.

There are a number of advantages to this approach.
It is very natural from a statistical viewpoint relative to
the other, more ad hoc, measures of tree balance. The
method has the potential to give quite a lot of information
about tree shape compared to a single summary statistic.
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Finally, it allows comparison of trees of different size by
superposition of scatterplots, which is a significant ad-
vantage. There is currently no generally accepted method
for comparing trees of different size using the standard
statistics; this remains a problematic issue (Mooers, 1995;
Stam, 2002).

However, there are three disadvantages that may make
Aldous’ proposal not as practical as might be hoped. The
first is that regression works best with many points of
data, and thus one can only expect his technique to work
with rather large trees. This problem is exacerbated by
the fact that isomorphic subtrees are superimposed on
one another in the scatterplot, further reducing the num-
ber of fittable points. The second is an inherent prob-
lem with summarizing a tree as a scatterplot of this sort.
Assume that tree T has two nonisomorphic subtrees A
and B of the same size. Exchanging A and B in T will
not change the scatter plot and thus will not change
any regression parameters, although the resulting tree
may differ significantly in shape. The third problem is
that the resulting output can be hard to interpret. What
does, for example, the kth Taylor coefficient of the fitted
function actually signify? Despite these issues, this tech-
nique seems underutilized and might be the technique
of choice when working with large phylogenies.

Overall, it appears that additional methods would be
useful for understanding tree shape. This paper attempts
to provide some of these new methods.

THE GEOMETRIC APPROACH

The basic philosophy behind the geometric approach
is that similar trees should have similar statistics, and
that rather different trees should have different statis-
tics. This philosophy is summarized in Figure 1. All of
the trees with six tips are evaluated by two hypothetical
statistics. The top axis shows what one might consider a
good statistic. The maximally balanced trees are on the
far left side, and the completely unbalanced tree is on the
far right. When a subtree is preserved, the statistic tends
not to change too much. The bottom axis shows what
might be considered a bad statistic. The extremes of tree
balance are now put together, and two similar trees are
now on the two extremes of the axis.

If one is to apply this sort of intuition on trees, it is
necessary to formalize the notion of similar and different
for trees. This is done by defining a metric on unlabeled
trees.

FIGURE 1. Good and bad statistics from the geometric perspective. The horizontal axes represent values of hypothetical statistics. In (a) very
different trees are separated, whereas in (b) similar trees are separated and different trees are close together.

A Metric for Evolutionary Histories

This section describes a metric on unlabeled trees that
can be applied directly to compare tree shapes or can
be used to guide the selection of statistics as described
below. For this paper the word “tree” signifies a finite
strictly bifurcating rooted tree without leaf labels or spec-
ified edge lengths. Finite strictly bifurcating rooted trees
have been chosen as they correspond most naturally to
the output of current macroevolutionary models. This
paper concerns itself with tree shape rather than the
identity of taxa; thus, leaf labels are ignored. Finally, the
intent of this paper is to understand the combinatorial
content of the tree; thus, trees are considered without
specified edge lengths. The case including edge lengths
would be an interesting future extension of this work but
would require a significant further development of the
methodology.

A metric g is simply a set of distances between pairs of
a collection of objects satisfying (i) g(x, y) = 0 if and only
if x = y, (ii) g(x, y) = g(y, x), (iii) the triangle inequality:
g(x, y) + g(y, z) ≥ g(x, z). One such metric is the nearest
neighbor interchange (NNI) metric on unlabeled trees.
A single NNI “move” represents a change of branch-
ing order of a tree to one of two possible configurations.
The two possible moves are depicted in Figure 2. The
unlabeled NNI distance from one tree to another is de-
fined to be the minimum number of moves necessary
to change one tree to the other. Note that these inter-
changes have appeared before in Kuhner et al. (1995) as
proposal draws for their Metropolis-Hastings approach
to estimating population parameters.

Tree space equipped with the NNI metric is shown in
Figure 3 for trees on 6 leaves. It is a graph that has connec-
tions between any two trees that are a single NNI move
apart. Note that the NNI distance is a special case of the
shortest-path metric on a graph and thus it satisfies the
above conditions to be a metric. Also, although the met-
ric is not explicitly model based, a change of branching
order can be thought of as a change of timing of diversi-
fication events.

Unsurprisingly, computing this metric is NP-
complete, as can be seen by a small modification of
a similar proof by DasGupta et al. (2002). Their pa-
per demonstrates that calculating the unrooted NNI
distance on unrooted trees is NP-complete. However,
the unrooted NNI moves are identical to the moves in
Figure 2 when the tree shown in the diagram is chosen
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FIGURE 2. A single-rooted NNI move consists of rearranging the tree in either of the two ways shown here. The NNI distance between two
trees is the minimum number of moves required to change one tree to another.

FIGURE 3. Unlabeled tree space equipped with the NNI metric for the trees on six taxa. An edge between two trees means that a single NNI
move changes one to the other.
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to be anything but the entire tree. Therefore, one can
simply root the tree in figure 4 of their paper on the far
left side of the main linear tree and the proof proceeds
as in their paper.

There are certainly many metrics possible on unla-
beled tree space, and NNI is just one choice. For example,
an alternative would be the subtree-prune-regraft (SPR)
metric, which is similar to the above metric in that it
counts the minimal number of moves needed to change
one tree to another. However, the SPR moves cut a whole
subtree out of the larger tree and then reconnect it in an
arbitrary location. Because a single one of these moves
can radically alter the shape of a tree, the NNI metric
may be more appropriate, which makes smaller changes
each step.

For the analysis, tree space was generated for trees of 7
to 15 leaves. The NNI graph was created, and Djikstra’s
well-known algorithm was used to calculate the short-
est paths. There are 10,905 tree shapes of 16 leaves, and
though it is certainly possible to perform the analysis
below for problems of this size, it was decided to stop
with 15. As described later in this paper, the number of
tree shapes grows exponentially and the added benefit
of another leaf or two did not justify the specialized pro-
gramming required.

Resolution of Statistics

In this section the notion of the resolution of a tree shape
statistic with respect to a given metric is defined. The res-
olution will be the operational definition of performance
for tree shape statistics from the geometric perspective.

First fix l, the number of leaves, and enumerate all n
trees on l leaves. Let di j be the distance between trees
i and j . Although any metric can be chosen, all of the
analysis in this paper will be done with respect to the
above NNI metric on tree shapes. Let H be the n × n
“centering matrix”

H = I − n−111′

where 1 is the vector with every entry equal to one and ′
denotes transpose. The application of the centering ma-
trix to a vector subtracts off the average of the entries
of the vector from each component. Given a tree shape
statistic f , define the vector yf such that the ith compo-
nent (yf )i is the value of f on the ith tree. Assume that
f is not constant on the trees, such that Hyf �= 0, and
define

x f = H yf /‖Hyf ‖.

The vector x f is simply the centered normalized vector
of statistics for the n trees. The resolution of the statistic
f with respect to a distance matrix D = (

di j
)

is defined
as

RD( f ) = 1
2

∑
i, j

−d2
i j (x f )i (x f ) j (1)

This equation formalizes the geometric perspective on
tree shape: that a “good” tree shape statistic is one which
is similar for similar trees and different for rather differ-
ent trees. Indeed, an individual term of the sum in (1)
will be maximized if (x f )i is very negative and if (x f ) j
is very positive or vice versa. The summation and the
distances simply combine all of these terms together in a
weighted fashion such that i j pairs that are distant carry
more weight than ones which are close. Therefore, for a
statistic with high resolution, the more distant trees will
tend to be farther apart in x-value, and the closer trees
will tend to be closer in x-value.

As an example, one can compute the resolution of the
tree shape statistics presented in Figure 1. The “good”
statistic in Figure 1 has a resolution value of 2.33, whereas
the “bad” statistic has a resolution value of −1.23. In this
case the upper limit of the resolution is 3.10 and the lower
limit is −1.27, which are the eigenvalues of a matrix as
described below.

The definition of the resolution is motivated by the
statistical method of multidimensional scaling (MDS)
(Mardia et al., 1979; Borg and Groenen, 2005). The goal of
MDS is to find a set of points p1, . . . , pn in k-dimensional
Euclidean space such that the distance between two ob-
jects with respect to a metric is well approximated by the
Euclidean distance between the corresponding points.
Specifically, MDS minimizes the quantity

[ ∑
i< j

(di j − |pi − p j |)2

]1/2

among all collections of n points in k-space.
The MDS methodology is sketched here in order to re-

late it to the resolution. Let D = (di j ) be the pairwise dis-
tance matrix, and let Ds represent the component-wise
matrix square of D, such that the i j th component of Ds

is d2
i j . Define

XD = −1
2

H Ds H

Let v1, . . . , vk be the unit-norm eigenvectors correspond-
ing to the k largest eigenvalues λ1 ≥ · · · ≥ λk > 0 of the
matrix. The coordinates of the above-described optimal
points pi can be calculated using the formula

(pi )m =
√

λm · (vm)i .

In short, the best approximation for the distance data
in one-dimensional space is the first eigenvector, the best
approximation in two dimensions is the pair of the first
two eigenvectors, and so on. Therefore, from the mul-
tidimensional scaling perspective, the best k tree shape
statistics are the first k eigenvectors of XD. This is the ap-
proach taken in most applications of multidimensional
scaling.

However, we do not have this luxury. Each dimen-
sion of XD, equal to the number of unlabeled trees, is
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asymptotically of order bll−3/2 where l is the number of
leaves and b ≈ 2.483 (Harding, 1971; Semple and Steel,
2003). It is not practical to solve eigenproblems of this
size and so the exact eigenvectors are not accessible.

The best one can do is to approximate the eigenvectors
by things which are efficiently calculable. The Rayleigh
Quotient theorem states that the eigenvector correspond-
ing to the largest eigenvalue of a symmetric matrix M
maximizes the quadratic form qM(x) = x′Mx over all
unit-norm vectors x (Ortega, 1987). The current set of
tree shape statistics can be calculated efficiently, and so
the best choice of statistic from the MDS perspective is
the one which maximizes the quadratic form associated
with XD.

This quadratic form associated to XD is basically (1).
In its raw form it is

qXD(x) = −1
2

x′ H Ds H x.

First simplify by only considering x which are already
centered, i.e., such that Hx = x. This is not a loss of gen-
erality because any optimal x will certainly be centered;
recall that x f is centered by definition. Therefore, the as-
sociated quadratic form on centered vectors of tree shape
statistics is

RD( f ) = −1
2

x′
f Ds x f , (2)

which is equivalent to (1). By the Rayleigh Quotient theo-
rem, the largest eigenvalue of −0.5Ds is an upper bound
for RD( f ) and the smallest eigenvalue is a lower bound
for RD( f ). There is a unique linear transformation trans-
forming the resolution between these two bounds to the
interval between zero and one; this will be reported in
the tables below and called the scaled resolution.

To get all the eigenvectors corresponding to positive
eigenvalues of a symmetric matrix M, one can apply the
following algorithm: first find the unit-norm v1 maximiz-
ing qM, which is the first eigenvector. Then project v1 out
of the matrix, resulting in M1 = (I − v1v

′
1) M (I − v1v

′
1).

Then the second eigenvector will be the v2 maximizing
qM1 ; project v2 out of M1 to create a matrix M2, and so on.

As described above, it is difficult to follow this recipe
exactly because of the large size of the associated ma-
trices. However, one can approximate the process as
follows: first, pick the statistic f1 that maximizes the res-
olution, and project out x f1 to create a matrix D1. Then,
pick the statistic f2 that maximizes RD1 , project again,
and so on. Note that it is necessary to take an orthonor-
mal basis for the projecting vectors, as they will not
be automatically orthogonal as in the eigenvector case.
Exactly these steps will be performed in the following
section.

One possible objection to the resolution methodology
is that the definition of RD is implicitly tied to the uniform
distribution on tree shapes. That is to say, trees that are
never seen in models or from data carry equal weight in

the resolution measure as trees which are common. In
theory, this could decrease the utility of the resolution
measure, especially when considering large trees.

It would be possible to incorporate a distribution on
the trees, say pi , using the following modification to RD:

RD, p( f ) = 1
2

∑
i, j

−d2
i j pi p j (x f )i (x f ) j

This extension, although intuitively attractive, can
lead to biases in the corresponding high-resolution statis-
tics. For example, assume that one chose for a distribu-
tion the Aldous (2001) beta-splitting model with β = −1.
This is a reasonable choice for a tree shape distribution,
but performing an analysis analagous to that given below
with this weighting scheme could be misleading: statis-
tics chosen with this weighting would have diminished
power to reject the beta-splitting model. This is simply
because trees which are unlikely under this model will
factor less into RD, p and therefore will get a more arbi-
trary assignment in a high-resolution statistic.

Because of the possibility of bias, the weighted exten-
sion will not be followed in this paper. It may make sense
to add some weighting to the definition when it is per-
fectly clear that certain tree shapes will never be seen
in models or data; however, this is usually not the case.
Furthermore, because of the moderate size of the trees
used to evaluate the statistics, this uniform-distribution
objection has less impact.

Note that this is not the first application of multidi-
mensional scaling ideas to phylogenetic analysis: Hillis
et al. (2005) applied it with interesting results to the
space of trees with labeled tips. They used MDS with
the Robinson-Foulds distance metric as a tool for visu-
alization and analysis of the output of tree reconstruc-
tion software. The intent and methods differ here, as this
paper concerns itself with finding near-optimal statistics
for understanding unlabeled tree space with the NNI
metric.

RESULTS

In this section, the methodology of the previous sec-
tion is applied to compare the resolution of tree shape
statistics. First the standard list of statistics will be evalu-
ated (Kirkpatrick and Slatkin, 1993; Agapow and Purvis,
2002; Felsenstein, 2004) according to the above method-
ology. Then a best second statistic is searched for given
the first, and the best third statistic given a first and
second. The chosen criterion for performance is high
resolution on the whole unlabeled tree space with the
NNI metric as described in the previous section. The
tree space was generated and evaluated by an ocaml
(Chailloux et al., 2000) program whose source is avail-
able upon request. All of these tree shape statistics can be
calculated for any trees in Newick format using the sim-
ple command-line software simmons available at http:
//www.math.canterbury.ac.nz/matsen/simmons/.
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The “classical” list of tree balance statistics was chosen
to be N̄ and σ 2

N proposed by Sackin (1972), Ic proposed
by Colless (1982), and B1 and B2, proposed by Shao and
Sokal (1990). To the list was added a rarely used statistic
I2, invented by Mooers and Heard (1997) to provide a
measure that weights all nodes equally. The definition of
all of these statistics has been included in Appendix 1.
Finally, the proposal of Aldous (2001) was implemented
to perform median regression as described in the intro-
duction. Median regression was used to fit a quadratic
polynomial to the data and the linear and quadratic co-
efficients were interpreted as descriptive statistics which
will be called A1 and A2.

Although Aldous’ paper did not explicitly specify
how to perform the median regression, nonlinear me-
dian regression was chosen as described by Koenker and
Bassett (1978). This method minimizes the sum of the
distances of the estimated median to the data points.
Median regression performs better (as a maximum-
likelihood estimator) than least-squares regression when
errors are non-Gaussian, as in the present case. It can be
easily implemented using linear programming; in this
case it was implemented in 34 lines of code using an
ocaml frontend to the GNU linear programming pack-
age GLPK.

The results of this analysis are presented in Table 1.
First, the scaled resolution of two statistics, Ic and N̄, is
rather close to one, which is the upper limit. This is quite
remarkable, in that two statistics that were designed “by
hand” to measure a visible aspect of tree shape end up
having almost as much resolution as theoretically possi-
ble. The fact that overall tree balance appears as such an
important descriptor justifies in a sense the dispropor-
tionate amount of attention given to it in the tree shape
literature. Another nice fact is that Ic and N̄, the two
statistics with the highest resolution, are also the two
most powerful according to Agapow and Purvis (2002).
In this first setting, I2 does have substantially lower reso-
lution than the other statistics; however, it performs well
in other settings. Finally, it appears that the coefficients of
the best-fit quadratic polynomial on the Aldous scatter-
plot should not be used as a first statistic in the simple-
minded way presented here on small trees; it is possi-

TABLE 1. Scaled resolution scores for tree statistics on the NNI dis-
tance matrix. For all tables, the maximum scaled resolution is one and
the minimum is zero. The number of leaves of the corresponding trees
is denoted by l, and Ic , N̄, σ 2

N, I2, B1, B2, A1, and A2 denote tree shape
statistics as described in the text and Appendix 1.

l Ic N̄ σ 2
N I2 B1 B2 A1 A2

7 0.925 0.930 0.902 0.884 0.864 0.925 0.545 0.548
8 0.925 0.912 0.875 0.861 0.832 0.911 0.429 0.436
9 0.918 0.920 0.882 0.853 0.832 0.906 0.316 0.328

10 0.940 0.938 0.898 0.854 0.832 0.908 0.365 0.383
11 0.953 0.951 0.910 0.855 0.837 0.913 0.382 0.397
12 0.953 0.952 0.908 0.850 0.831 0.904 0.383 0.403
13 0.954 0.954 0.907 0.841 0.824 0.899 0.388 0.410
14 0.955 0.954 0.907 0.837 0.819 0.890 0.388 0.412
15 0.954 0.954 0.904 0.829 0.812 0.882 0.398 0.424

ble that an alternative formulation would yield better
results.

So far it is only clear that choosing for maximal resolu-
tion gives results that do not seem completely out of the
ordinary. However, now something new is possible. Say
that Ic is chosen as the first statistic. What is the best sec-
ond number to know about a tree given that Ic is already
known? This question has a mathematical formulation:
simply project out the Ic component of the matrix XD
and repeat the above process.

The resolution scores of the previously chosen statis-
tics are listed in Table 2. Note that Ic has low resolution
because it has been projected out, and that N̄ has rather
small resolution, which is to be expected because it is
highly correlated with Ic (Blum et al., 2006; Ford, 2005).
Comparatively, I2, A1, and A2 now do better.

However, it is possible to improve on existing statis-
tics by explicitly constructing a statistic that measures a
different aspect of tree shape than Ic . Plotting the prin-
cipal components of the XD matrix suggests that a good
second statistic may be the change of balance from the
root to the tips. This intuition is implemented here as the
“derived statistics” of a given statistic.

The derived statistics attempt to quantify the change
of a statistic through the tree. Start by making a two-
dimensional scatterplot of the tree, where each subtree
is represented by a point with the x axis being the size of
the subtree and y being the value of the statistic Y. Now
do median regression on this scatterplot and report the
slope of the best-fit line or the quadratic coefficient of the
best-fit quadratic polynomial. Given an original statistic
Y these two derived statistics will be called Y′ and Y′′ in
analogy to the first and second derivatives of calculus.
Higher derived statistics and other fittable functions are
of course possible but will not be investigated in this
paper. In contrast with the Aldous statistics, note that
the regression is done on the points directly, rather than
on their image under the logarithm.

Also, recall a statistic that has been understood from
the theoretical perspective but is not in common us-
age in the tree shape literature: the number of “cher-
ries” of a tree. A “cherry” is simply a subtree of two
leaves. McKenzie and Steel (2000) have shown that the
distribution of the number of cherries is asymptotically
normal under both the equal rates Markov and the uni-
form model (see next section) and have derived the mean

TABLE 2. Scaled resolution scores for tree statistics on the NNI dis-
tance matrix after projecting out Ic .

l Ic N̄ σ 2
N I2 B1 B2 A1 A2

7 0.267 0.283 0.270 0.467 0.362 0.324 0.551 0.557
8 0.252 0.267 0.262 0.484 0.377 0.309 0.511 0.513
9 0.203 0.219 0.212 0.479 0.352 0.298 0.340 0.360

10 0.171 0.185 0.185 0.489 0.355 0.264 0.409 0.424
11 0.154 0.167 0.172 0.503 0.360 0.268 0.425 0.436
12 0.135 0.147 0.157 0.511 0.367 0.252 0.422 0.430
13 0.126 0.136 0.152 0.524 0.377 0.258 0.432 0.441
14 0.117 0.127 0.148 0.535 0.389 0.257 0.427 0.431
15 0.110 0.119 0.145 0.545 0.398 0.262 0.436 0.436
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TABLE 3. Scaled resolution scores for tree statistics on the NNI dis-
tance matrix after projecting out Ic . A prime (′) or two primes (′′) denote
the first or second derived statistics, respectively. “Cherries” denotes
the cherries statistic as described in the text.

l Cherries I ′
c I ′

2 B ′′
1 B ′′

2 A1 A2

7 0.448 0.641 0.576 0.541 0.532 0.551 0.557
8 0.486 0.694 0.683 0.433 0.529 0.511 0.513
9 0.485 0.723 0.720 0.507 0.491 0.340 0.360

10 0.507 0.635 0.636 0.480 0.519 0.409 0.424
11 0.530 0.622 0.618 0.469 0.563 0.425 0.436
12 0.548 0.580 0.571 0.454 0.548 0.422 0.430
13 0.569 0.589 0.587 0.434 0.563 0.432 0.441
14 0.587 0.577 0.562 0.423 0.572 0.427 0.431
15 0.602 0.560 0.544 0.417 0.576 0.436 0.436

and variance for each. The cherries statistic was not in-
cluded in Table 2 because it does not measure the overall
balance of a tree.

Table 3 presents the results of the resolution method
as applied to the distance matrix after Ic has been pro-
jected out. The best performance is achieved by the num-
ber of cherries, perhaps the simplest possible statistic.
Although the performance of the cherry statistic lags
behind the above statistics as a first statistic, it has
remarkably good performance as a second statistic. Sim-
ilar performance is achieved by the slightly more com-
plex I ′

c . The values of B ′′
1 and B ′′

2 were also reported due
to their good performance.

Now assume the number of cherries is chosen for the
second statistic and we look for a third. As before, project
Ic and the number of cherries out of the matrix and com-
pare scores. This time it is B ′′

2 and I ′′
c that perform the

best.
In the end, what is the best general-purpose suite of

statistics to use for tree shape description? For a first
statistic, the answer is probably Ic or N̄. They have high
resolution and are simple to compute. For a second statis-
tic, the number of cherries and I ′

c also have good reso-
lution and relatively simple interpretations. For a third
statistic, the statistic with the highest resolution is B ′′

2 ;
however, another recommendation would be the triple
(Ic , I ′

c , I ′′
c ), which has satisfactory resolution and a some-

what intuitive interpretation.

Example Application

In the introductory section, it was stated that “inter-
polating” evolutionary models could be used to fit any
given pattern of overall imbalance. It was argued that this
fact motivates the use of multiple tree shape statistics, as a
single statistic may be insufficient to distinguish between
trees generated by the original evolutionary model and
a fitted one. In this section it is demonstrated that over-
all balance statistics such as Ic have almost no statistical
power to differentiate between the distributions given
by two such models, and then it is found which statis-
tics do. The satisfying conclusion is that statistics that
have high resolution after projecting out Ic appear to be
good at distinguishing between the original and fitted
distributions.

The interpolating model chosen for this example ap-
plication is Aldous’ beta-splitting model (Aldous, 1995,
2001). It is a simple model with a single parameter, β,
which allows interpolation between the maximally im-
balanced tree (β = −2) and the maximally balanced tree
(β = ∞). The “equal rates Markov” or ERM tree (i.e.,
the coalescent tree distribution) emerges when β = 0.
The “proportional to different arrangements” or PDA
tree (i.e., the distribution on tree shapes induced by
a uniform distribution on labeled trees) appears when
β = −1.5.

The idea of this model is to recursively split the tips
into two subclades using the beta distribution. More pre-
cisely, assuming that a clade has l taxa, the probabil-
ity of the split being between subclades of size i and
l − i is

ql,β(i) = C(l; β)
�(β + i + 1)�(β + l − i + 1)

�(i + 1)�(l − i + 1)

where C(l; β) is a normalizing constant. This distribution
is equivalent to scattering the taxa on the unit interval
and then splitting with the B(β + 1, β + 1) distribution
(Aldous, 1995).

This model is easily adapted to a maximum-likelihood
framework. The likelihood of each tree for a given β is the
product of the likelihoods of each split. The likelihood of
a collection of trees was chosen to be the product of the
likelihoods of each tree. With a trick from Aldous (1995)
one can derive a formula for the C(l; β) and then find a β
that maximizes the log-likelihood of a collection of trees
in the standard way.

As an application of the above statistics the effect of
missing taxa on phylogenetic tree shape will be investi-
gated using simulation. The pattern of taxon deletion is
chosen to model the effect on tree shape of a sequenc-
ing strategy which is common in the realm of infectious
disease: sequence only those strains which are signifi-
cantly different from previously sequenced strains. As-
sume that the original tree emerged from an evolutionary
process which has the ERM distribution on trees. Fur-
thermore, assume that the edge lengths are distributed
according to a N(1, .25) Gaussian distribution truncated
below zero. Given such a tree with l leaves, recursively
delete k taxa in the following manner: find the pair of taxa
that are closest together in terms of tree distance (includ-
ing edge length) and randomly delete one of them. After
deletion, perform a maximum-likelihood fit as described
above on those trees, resulting in a β, and then generate
a sample of beta-splitting trees on l − k leaves using this
β. Which statistics can distinguish between the original
trees and the fitted trees?

This simulation study was performed with a sample
size of 500, l = 100, and k = 10. The β value fitted to
the described deletion process was −1.03, correspond-
ing to a decrease in balance from the β = 0 original
tree. Statistics were then compared between 500 of the
“fitted” beta-splitting trees and the 500 original trees
with deleted taxa. The trees were then evaluated with
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TABLE 4. Scaled resolution scores for tree statistics on the NNI dis-
tance matrix after projecting out Ic and the number of cherries.

l B ′′
2 I ′′

c I ′′
2 A1 A2

7 0.747 0.531 0.423 0.662 0.689
8 0.669 0.617 0.536 0.620 0.634
9 0.545 0.525 0.400 0.376 0.396

10 0.556 0.507 0.382 0.449 0.461
11 0.594 0.506 0.392 0.458 0.462
12 0.590 0.533 0.433 0.459 0.457
13 0.602 0.543 0.420 0.450 0.444
14 0.608 0.542 0.419 0.437 0.427
15 0.611 0.550 0.425 0.437 0.424

the two-tailed Wilcoxson rank sum test to find statisti-
cal power of each statistic to differentiate between the
two distributions. The results of this analysis are in
Table 5.

As stated above, the statistical power for this scenario
corresponds with the resolution of these statistics when
Ic has been projected out. This makes sense because when
a tree is fit to the beta-splitting model, the overall balance
of the trees would be a primary determining factor. Re-
call that the three statistics with highest resolution after
projection of Ic were the number of cherries, I ′

c , and I2.
These three statistics are also the most powerful for the
example application. The statistics A1 and A2 were also
included in Table 5 because they performed reasonably
well; this corresponds with their good resolution after
projecting out Ic as shown in Table 3. It is also not sur-
prising that these statistics perform better on relatively
large trees. Finally, as might be expected for a situation
in which the overall balance of a tree has been fitted to
the model, the statistic Ic has essentially no power to
distinguish between the two models.

This simple simulation exercise further demonstrates
that the resolution measure can help guide the selection
of good general-purpose tree shape statistics. Al-
though these statistics were chosen on purely geomet-
ric grounds, they were also the most powerful for this
somewhat arbitrary model.

EXTENSIONS

There are a number of limitations to this methodology
that point the way for future development. The first is
that this application of the MDS technique was to a spe-
cific model of tree space, namely that with the unlabeled

TABLE 5. Comparison of the scores for various statistics when ap-
plied to trees from two different models. “NM” signifies the median of
the statistic when applied to a sample of ERM trees of size 90; “DM”
signifies the median when applied to a sample of beta-splitting trees
with leaves deleted as described in the text. The last line shows the
P-value for the two-sided Wilcoxson rank-sum test.

Distance Ic Cherries I2 I ′
c A1 A2

NM 0.077 30 0.47 0.015 0.62 0.056
DM 0.076 29 0.49 0.019 0.51 0.089
P 0.16 7.6 × 10−32 5.1 × 10−13 4.6 × 10−7 4.4 × 10−6 1.1 × 10−6

NNI distance. It is possible that this is not a good choice.
However, the general framework presented here is not
tied to the NNI metric, thus other models may be used
in the future if desired. Another angle on this issue is
the fact that the resolution is implicitly tied to the uni-
form distribution on tree shapes. As mentioned above, a
nonuniform distribution could be accomodated but may
lead to undesirable biases. Nevertheless, a careful exam-
ination of resolution in the nonuniform case could lead
to interesting results.

Second, this methodology offers nothing to the de-
bate of how to compare the shape of trees of different
size. This is a very fundamental problem, which may
be more philosophical than technical: what does it ac-
tually mean to say that a tree of one size has a similar
shape to one of a different size? A common response
in the literature (Mooers, 1995; Stam, 2002) is to com-
pare in one way or another the shape of a given tree
to a sample of trees from a fixed distribution; know-
ing the distribution of the statistic as for the number
of cherries (McKenzie and Steel, 2000) makes this an
attractive option for some statistics. However, if de-
scriptive theory independent of perhaps over-simple
models is desired, some other method will have to be
found. This is clearly an interesting avenue for future
research.

Third, because as mentioned above the number of
unlabeled binary trees is exponential in the number of
leaves, this analysis is limited to moderately small trees.
This may skew the analysis in that statistics that per-
form poorly for small trees may perform quite well for
large trees; an example case might be Aldous’ descrip-
tors of tree shape. One response to this objection is that
the results show a certain level of stability as l increases:
statistics that are good for smaller l appear to be good
for larger l as well. Furthermore, although increasingly
large trees are now available, the analysis of trees of in-
termediate size is still a challenge and at worst the above
methodology is applicable to that case. However, this is
a problem for future research, and new methods may
solve this problem.

Fourth, edge length information is conspicuously
absent in tree shape analysis. Typically, information
about timing of speciation (or other branching) events
is analyzed in a completely different manner, as a
lineages-through-time plot, which is then used to es-
timate speciation and extinction rates with maximum
likelihood (Nee et al., 1994). Any analysis of this sort
eliminates topological information that may aid in choos-
ing an evolutionary model. The tree shape literature
has already shown that the standard birth-death pro-
cess where each leaf is equally likely to split or be elim-
inated does not construct trees that seem to reflect the
imbalance seen in nature; nevertheless, this assump-
tion is implicit in lineages-through-time analysis. More
work is needed to integrate the tree shape and timing
literature.

Fifth, the statistics that are examined here are for
the most part ad hoc. With the exception of Aldous’
statistics, they are designed to describe a visible aspect
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of tree shape. A less ad hoc algebraic approach has been
examined in Matsen and Evans (2006). Furthermore, it is
possible to optimize over algebraic expressions that give
tree shape statistics in a natural way. The author has im-
plemented a genetic algorithm to do so; this work will be
described in a forthcoming paper (Matsen, 2006). There is
certainly room for improvement: with the notable excep-
tion of the first tree shape statistic, the statistics described
in this paper have substantially less resolution than the
upper bound (see Tables 2 and 4).

Finally, there is a limitation that is fundamental to any
discussion of trees: with very few exceptions, trees are
not actual data. They are almost certainly flawed recon-
structions of historical events. A common response to
this problem by coalescent theorists trying to estimate
evolutionary parameters is to simply “integrate out” the
history by performing MCMC iteration over possible his-
tories (Kuhner et al., 1995). However, there seems to be
a signal in tree shape that stands out from the noise and
that can guide the selection of evolutionary models. Tree
shape also has a role in understanding potential prob-
lems and biases of tree reconstruction methods.

In summary, a new method is developed here for eval-
uating tree shape statistics, which is called the resolution
of a statistic. This method formalizes the intuition that
a good statistic takes on similar values for similar trees
and different values for rather different trees. It has the
advantage that it can help choose a kth statistic given
that k − 1 other statistics are already known; this opens
up the possibility of finding a useful suite of statistics to
describe a tree. The method is applied to make specific
recommendations for such a suite of three statistics. Fi-
nally, the results of the geometric analysis are compared
to two model-based tree distributions and find that statis-
tics with good resolution were also the ones that had high
power to distinguish the two distributions. This paper
represents a small step in an area that may continue to
pose interesting questions for years to come.
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APPENDIX 1
Statistics previously defined in the literature are pre-

sented here for the convenience of the reader. Assume a
tree has been chosen with l leaves. Let Ni represent the
number of internal nodes between leaf i and the root (in-
clusive). Let r j and s j be the number of leaves of the two
subtrees above the internal node j . For an internal node
j and leaf i let d ji be the number of edges on the path
connecting j to i . Let Mj be the maximum of d ji over
leaves i subtended by j . Let L be the leaves of the tree
and I the internal nodes except for the root. The root is

denoted r .

Ic = 2
(n − 1)(n − 2)

∑
j∈I∪{r}

|r j − s j |

I2 = 1
n − 2

∑
j∈I∪{r}
r j +s j >2

|r j − s j |/|r j + s j − 2|

N̄ = 1
n

∑
i∈L

Ni

σ 2
N = 1

n

∑
i∈L

(N̄ − Ni )2

B1 =
∑
j∈I

M−1
j

B2 =
∑
i∈L

Ni/2Ni




