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Modern biological techniques enable very
dense genetic sampling of unfolding evolu-
tionary histories, and thus frequently sam-
ple some genotypes multiple times. This
motivates strategies to incorporate geno-
type abundance information in phylogenetic
inference. In this paper, we synthesize
a stochastic process model with standard
sequence-based phylogenetic optimality, and
show that tree estimation is substantially
improved by doing so. Our method is vali-
dated with extensive simulations and an ex-
perimental single-cell lineage tracing study
of germinal center B cell receptor affinity
maturation.

Introduction

Although phylogenetic inference methods were
originally designed to elucidate the relationships
between groups of organisms separated by eons of
diversification, the last several decades have seen
new phylogenetic methods for populations that are
evolving on the timescale of experimental sampling
[7]. This development is being spurred by new ex-
perimental techniques that enable deep sequencing
at single-cell resolution, some of which enable quan-
tification of original abundance. For bulk sequenc-
ing, random barcodes can be used to quantify PCR,
template abundance [27], 25] B]. More recently, cell
isolation [42] or combinatorial techniques [4, [5] 22]
have provided sequence data at single-cell resolu-
tion. With such data, a given unique genotype—
among many in the data—is represented in a mea-

sured number of cells. The abundance of a genotype
can be read out as the number of cells bearing that
genotype. Here we demonstrate that incorporating
genotype abundance improves phylogenetic infer-
ence for densely sampled evolutionary processes in
which it is common to sample genotypes more than
once.

We are motivated by the setting of B cell de-
velopment in germinal centers. B cells are the
cells that make antibodies, or more generally im-
munoglobulins. Immunoglobulins are encoded by
genes that undergo a stage of rapid Darwinian
mutation and selection called affinity maturation
[36]. During affinity maturation, immunoglobulin
is in its membrane-bound form, known as the B
cell receptor (BCR). The biological function of this
process is to develop BCRs with high-affinity for
a pathogen-associated antigen molecule, and later
excrete large quantities of the associated antibody.

This affinity maturation process occurs in spe-
cialized sites called germinal centers in lymph
nodes, which have specific cellular organization to
enable B cells to compete among each other to
bind a specific antigen (proliferating more readily
if they do) while mutating their BCRs via a mech-
anism called somatic hypermutation (SHM). Using
micro-dissection, researchers can extract germinal
centers from model animals and sequence the genes
encoding their BCR directly [46], [30]. Lymph node
samples are also available through autopsy [45] or
fine needle aspirates from living subjects [2I]. Such
samples provide a remarkable perspective on an on-
going evolutionary process.

Indeed, these samples contain a population of



cells with BCRs that differentiated via SHM at var-
ious times and have various cellular abundances.
Because the natural selection process in germinal
centers appears permissive to a variety of BCR-
antigen affinities [46] 30], earlier-appearing BCRs
are present at the same time as later-appearing
BCRs. The collection of descendants from a sin-
gle founder cell in this process naturally form a
phylogenetic tree. However, it is a tree in which
each genotype is associated with a given abun-
dance, and such that older ancestral genotypes are
present along with more recent appearances. Re-
construction of phylogenetic trees from BCR data
may benefit from methods designed to account for
these distinctive features.

Standard sequence-based methods for inferring
phylogenies fall into several classes according to
their optimality criteria.  Mazimum likelihood
methods posit a probabilistic substitution model on
a phylogeny and find the tree that maximizes the
probability of the observed data under this model
[10, 111 [13]. Bayesian methods augment likelihood
with a prior distribution over trees, branch lengths,
and substitution model parameters, and approx-
imate the posterior distribution of all the above
variables by Markov chain Monte Carlo (MCMC)
23, 6]. Mazimum parsimony methods use com-
binatorial optimization to find the tree that mini-
mizes the number of evolutionary events [9] 29, [T5].
Parsimony methods often result in degenerate infer-
ence, in which multiple trees achieve the same min-
imal number of events (i.e. maximum parsimony)
[33]. Additional approaches include distance ma-
triz methods, which summarize the data by the dis-
tances between sequence pairs, and phylogenetic in-
variants, which select topologies based on the value
of polynomials calculated on character state pat-
tern frequencies. None of the above methods incor-
porate genotype abundance information, and it is
standard for data with duplicated genotypes to be
reduced to a list of deduplicated unique genotypes
before a phylogeny is inferred.

In this paper we show that genotype abundance
is a rich source of information that can be produc-
tively integrated into phylogenetic inference, and
we provide an open-source implementation to do so.
We incorporate abundance via a stochastic branch-
ing process with infinitely many types for which
likelihoods are tractable, and show that it can be
used to resolve degeneracy in parsimony-based op-

timality. We first validate the procedure against
simulations of germinal center BCR diversification.
We also empirically validate our method using an
experimental lineage tracing approach combining
multiphoton microscopy and single cell BCR se-
quencing, allowing us to study individual germinal
center B cell lineages from brainbow mice. Beyond
the setting of BCR development, we foresee direct
application to tumor phylogenetics in single-cell
studies of cancer evolution (reviewed by Schwartz
et al. [41]), and single-cell implementations of lin-
eage tracing based on genome editing technology
[35].

New Approaches

Genotype-collapsed trees

Given sequence data obtained from a diversify-
ing cellular lineage tree (Figure )7 our goal is
to infer the genotype-collapsed tree (GCtree) defin-
ing the lineage of distinct genotypes and their ob-
served abundances (Figure[p). The GCtree is con-
structed from the lineage tree by collapsing sub-
trees composed of cells with identical genotype to
a single node annotated with its final cellular abun-
dance. Our data consists of the genotypes sampled
at least once in the GCtree, along with their associ-
ated abundances. Under the infinite types assump-
tion that every mutant daughter generates a novel
genotype, each genotype can be identified with one
subtree in the original lineage tree. We are not
claiming any originality in the GCtree definition,
but it is useful to have a word for this object.

We note that, unlike standard phylogenetic trees
where only leaf nodes represent observed geno-
types, GCtree internal nodes represent observed
genotypes if they are annotated with non-zero
abundance. Although not leaves per se in the GC-
tree, a nonzero abundance represents a clonal sub-
lineage that resulted in a nonzero number of leaves
of that genotype in the lineage tree. A node in the
GCtree, along with its descending edges, summa-
rizes the lineage outcome for a given genotype as its
mutant offspring clades and the number of its clonal
leaves. Because this summary does not completely
specify the genotype’s clonal lineage structure (Fig-
ure ), several branching structures may be consis-
tent with a given node, and we have no information
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Figure 1: Genotype-collapsed trees. (a.) A diversifying B cell lineage is illustrated with
distinct BCR genotypes colored. The final observed cells (enclosed by a dashed path) consist
of genotypes at various abundances; note the yellow genotype is not observed. (b.) The
corresponding genotype-collapsed tree (GCtree) describes the descent of distinct genotypes, and
is our inferential goal. (c.) Genotype abundance informs topology inference. Two hypothetical
GCtrees, equally optimal with respect to the sequence data, propose two possible parents of
the green genotype—the gray and yellow genotypes (the yellow genotype was not sampled and
thus has a small circle with no number inside). Intuitively, the abundance information indicates
that the tree on the left is preferable because the more abundant parent is more likely to have
generated mutant descendants.



with which to distinguish between the various lin-
eage trees consistent with a GCtree. Hence, our
goal is to infer the GCtree topology.

Parsimony with a prior

BCR sequence data from a germinal center sam-
ple has the following characteristics from the per-
spective of phylogenetics: genotypes have abun-
dances, there is a limited amount of mutation
between genotypes, and ancestral genotypes are
present along with later ones. The latter two fea-
tures suggest maximum parsimony as a useful tool
because of the limited amount of mutation and be-
cause ancestral genotypes can be assigned to in-
ternal nodes of the tree (although recent Bayesian
methods can do such assignment as well [I7, [18]).
For these reasons, parsimony has been used ex-
tensively in B cell sequence analysis [Il, [45]. Be-
cause having many duplicate sequences inhibits ef-
ficient tree space traversal, these studies have in-
ferred trees using the unique genotypes (BCR se-
quences). This ignores the varying cellular abun-
dances of the observed genotypes.

Here we wish to use a branching process model
to rank trees that are equally optimal according
to sequence-level optimality criteria. Indeed, max-
imum parsimony often results in degenerate infer-
ence: there are many trees that are maximally op-
timal [33]. We refer to these trees as a parsimony
forest. In later sections we show, using in silico and
empirical data, that parsimony degeneracy is com-
mon and often severe for BCR sequencing data, and
that parsimony forests exhibit substantial variation
in phylogenetic accuracy. It is common practice to
arbitrarily select one tree in the parsimony forest
at random, without regard for this variability in
inference accuracy. Instead, we will rank trees in
the parsimony forest with an auxiliary likelihood
that incorporates abundance information, thereby
resolving this degeneracy.

Genotype abundance is an additional source of
information for phylogenetics, using the simple in-
tuition that more abundant genotypes are more
likely to have more mutant descendant genotypes.
This intuition makes sense because relative sam-
ple abundance is a reasonable estimator of rela-
tive total historical abundance, and total histori-
cal abundance is related to the number of mutant
offspring—i.e. genotypes with larger abundance are

likely to have more mutant descendant genotypes
simply because there are more individuals available
to mutate. The number of mutant offspring geno-
types is in turn related to the number of surviving
mutant offspring sampled. Thus, given two equally
parsimonious trees, this intuition would prefer the
tree that has more mutant descendants of a fre-
quently observed node (Figure [Tk). We formalize
this intuition using a stochastic process model for
the phylogenetic development of germinal centers,
and integrate this model with sequence-based tree
optimality via empirical Bayes.

In this stochastic process model, a GCtree node
7 has a random number T; € N of mutant children
(i.e. descending edges) and a random abundance
A; € N. We will index nodes in a “level order” as
follows, which is well defined given an embedding
of the tree into the plane. Index 1 refers to the
root node, and 2 through 1 + 7} refer to the chil-
dren of the root node. The level-order continues
in order through all tree nodes of the same level
before nodes at the next level. Adopting this level-
ordering convention, a GCtree containing N nodes
is specified by integer-valued random vectors giv-
ing the (planar) topology T = (T4,...,Tx), and
abundances A = (Ay,...,An). We also have the
observed genotype sequences associated with each
node G = (Gy,...,Gn).

A complete diversification model would give a
joint distribution on T, G, and A. As an approxi-
mation to such a model, facilitating use of existing
sequence-based optimality methods, we propose a
generative model containing conditional indepen-
dences as follows (Figure 2h). First, we model
abundances A and tree topology T as being drawn
from a branching process likelihood, conditioned
on parameters 6 (characterizing birth, death, and
mutation rates in the underlying lineage tree):
P (A, T | 6). This stochastic process likelihood will
capture the intuition (described above) that more
abundant genotypes are likely to have more mu-
tant descendant genotypes. Next, we assume that
genotype sequences G are generated by a mutation
model conditioned on the fixed tree T, indepen-
dent of A. This sequence-based optimality is cap-
tured by a distribution over G dependent only on
T: P(G | T). The lack of direct dependence of G
on A constitutes an approximation to a more real-
istic sequence-valued branching process. However,
this formulation has the advantage that it allows us
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Figure 2: Modeling sequences equipped with abundances. (a.) Both genotype sequence data
G and genotype abundance data A inform tree topology T. As illustrated in this probabilistic
graphical model, we assume independence between G and A conditioned on T rather than a
fully joint model of G, A, and T. This facilitates using standard sequence-based phylogenetic
optimality for G, augmented with a branching process (with parameters 6) for A. (b.) For the
binary infinite-type Galton-Watson process, 8 = (p, q). Four possible branching events charac-
terize the offspring distribution common to all nodes. A node may bifurcate (with probability
p) or terminate, and upon bifurcating its descendants each may be a mutant (with probability
q). (c.) A GCtree node specifies a genotype's clonal leaf count and number of descendant
genotypes, but not lineage details. The likelihood of a GCtree node marginalizes over consistent
lineage branching outcomes. (d.) GCtree likelihood factorizes into the product of likelihoods
for each genotype.



to leverage standard sequence-based phylogenetic
optimality in the specification of P(G | T). In a
later section (In silico validation), we validate this
approximation with simulations that do not assume
this conditional independence.

In an empirical Bayes treatment (see Materials
and Methods for details), a maximum likelihood
estimate for the branching process parameters, 9,
can be obtained by marginalizing T, and this in
turn can be used to approximate a posterior over
T conditioned on the data G and A (as well as
é) Using parsimony as our sequence-based opti-
mality, one can rank trees in the parsimony forest
(denoted Tg) according to the GCtree likelihood.
We encode the parsimony criteria in P (G | T) by
assigning uniform weight to the trees in 7, and
zero to the other trees. This gives the following
approximate maximum a posteriori tree:

T = argmaxP (A,T | 9) ,
TeTa

(1)
where the point estimate 0 is given by

6= arg max > P(ATI|6). (2)

TeTa

Next we turn to explicitly defining the GCtree like-
lihood P(A, T | 6).

A stochastic process model of abun-
dance

To compute likelihoods P (A, T | 8) for GCtrees
(Figure [Ib), we model the lineage tree (Figure [Th)
as a subcritical infinite-type binary Galton-Watson
(branching) process [20] in which extinct leaf nodes
correspond to observed cells. All mutations in an
infinite-type process result in a novel genotype, em-
bodying the assumption that each genotype can
be identified with one subtree. Subcriticality en-
sures that the branching process terminates in finite
time, so an explicit sampling time is not needed.
The process is initiated with a single cell (a naive
germinal center B cell before affinity maturation en-
sues), and runs to eventual extinction. This model
is highly idealized and unable to capture many bio-
logical realisms of B cell affinity maturation and the
sampling process. However, as we show in our vali-
dations, it is useful as a minimal model for leverag-
ing genotype abundance information in a tractable
likelihood.

The offspring distribution for our process, gov-
erning reproduction and mutation for all lineage
tree nodes at all time steps, is specified by two pa-
rameters: the binary branching probability p, and
the mutation probability g. Because the offspring
distribution is independent of type, subcriticality
simply requires that the expected number of off-
spring of any node is less than 1, in this case equiv-
alent to p < 0.5. In this case a “mutation” is an
event that causes the evolving lineage to change to
a novel genotype (under the infinite-types assump-
tion). Thus the corresponding offspring distribu-
tion supports four distinct branching events (Fig-
ure [2b). Letting C and M denote the (random)
number of clonal and mutant offspring of any given
node in the lineage tree, respectively, the offspring
distribution is

1—p c=m =0,
p(l—q)? c=2,m=0,

P(C=ec,M=m)=<2pq(l—q) c=m=1,
pq? c=0,m=2,
0 otherwise.

®3)
We can compute the likelihood of a hypothet-
ical binary lineage tree simply by evaluating
at each node in the tree and multiplying the re-
sults. The likelihood for a GCtree is then given
by summing over all possible binary lineage trees
that are consistent with that GCtree (i.e. that give
the same GCtree when collapsing by genotype),
thus marginalizing out the details of intra-genotype
branching events that give rise to the same abun-
dance. Here we show how to calculate the GCtree
likelihood directly for the simple offspring distribu-
tion (3)). Other work [2] has described how to calcu-
late statistics of the infinite-type branching process
with a general subcritical offspring distribution.
First consider the likelihood for an individual
node in the GCtree, say the root node, in the con-
text of the branching process described above. A
GCtree node 1 is specified by its abundance A; and
the number of edges descending from it 7; (both
random variables). There are, in general, multiple
distinct branching process realizations for genotype
7 that result in A; = a clonal leaves and T; = 7
mutations off the genotype 4 lineage subtree (Fig-
ure ) Determining the likelihood of node i in
the GCtree under this process, which we denote by



fa'r(pv q) = ]P)(AZ =a,1;=T | 0= (p7 q))7 requires
marginalizing over all such genotype lineage sub-
trees. In Materials and Methods we derive a recur-
rence for f,(p,q) by marginalizing over the out-
come of the branching event at the root of the lin-
eage subtree for genotype i, and show that the GC-
tree node likelihood f,(p,q) can be computed by
dynamic programming.

A complete GCtree containing NV nodes is speci-
fied by level-ordering the nodes as described above
T = (Th,...,Tn), A = (A1,...,Ay). Because
the same offspring distribution generates the lin-
eage branching of each genotype subtree, the same
recurrence can be applied to all GCtree nodes.
Specifically, we show in Materials and Methods that
the joint distribution over all nodes in a GCtree fac-
torizes by genotype (Figure [21):

P(T =

7TN)3A: '7aN)‘0*(pa ))

N
=[] far. (0:a
=1

(Tl,... (CL17..

(4)

Using dynamic programming and factorization
by genotype, the computational complexity of
the GCtree likelihood is O(max(A) max(T") + N).
Ranking parsimony trees with GCtree requires a
polynomial increase in runtime compared with find-
ing the parsimony forest, which is itself NP-hard
[16]. Figure [S1| depicts runtime from simulations
of various size, and shows that, in practice, this
increased runtime is negligible.

A computational implementation of the inference
method above is available at http://github.com/
matsengrp/gctreel The GCtree inference subpro-
gram accepts sequence data in FASTA or PHYLIP
format, determines a parsimony forest from the
unique sequences using the dnapars program from
the PHYLIP package [14], determines the genotype-
collapsed form of these trees and outputs tree vi-
sualizations using the ETE package [24], and ranks
them according to their GCtree likelihood using the
sequence abundances. Bootstrap analysis is also
implemented, providing confidence values of each
split in the maximum likelihood GCtree. The GC-
tree maximizing the branching process likelihood
(with optional bootstrap support) is the inference
result. Next we show that resolving parsimony de-
generacy using GCtree substantially increases both
accuracy and precision of phylogenetic inference.

Results

In silico validation

To explore the accuracy and robustness of GCtree
inference, we developed a simulation subprogram
to generate random lineages starting with a naive
BCR sequence. For simulated lineages, true trees
can be compared against those inferred with the
GCtree inference subprogram. The stochastic pro-
cess model used in GCtree inference is intended as a
minimal model (in terms of biological realism) that
captures the intuition that genotype abundance is
relevant to phylogenetic reconstruction. Experi-
mental data need not obey our simplifying assump-
tions, thus we set out to test GCtree’s robustness
to deviations of the data generating process from
the inferential model.

A simulation process was implemented that in-
cludes biological realisms of B cells undergoing
SHM (and violates inferential assumptions). These
realisms of simulation—detailed in Materials and
Methods—include: branching process multifurca-
tions (controlled by a parameter A, the expected
number of children of a node in the cell lin-
eage tree), sequence context sensitive mutations
[8, 44] (with a baseline-line mutation rate A\, and
a context-specific mutational model with 5mer mu-
tabilities taken from [47]), explicit sampling time
(t, or N representing the number of cells desired in
the sampled generation), incomplete sampling (the
number of cells to sample n < N), and repeated
genotypes allowed (deviation from the infinite-type
assumption). This constitutes a more challenging
validation than simply simulating under the same
assumptions that had been invoked for tractability
of the inferential framework.

Our in silico validation workflow is demonstrated
in Figure [3p for a small simulation that resulted in
a parsimony forest with just two equally parsimo-
nious trees. The output of the simulation software
consists of FASTA data (sequences and their abun-
dances), visualizations of the lineage tree and its
GCtree equivalent, and a file containing the true
GCtree structure. The GCtree inference subpro-
gram can then be run on the FASTA data, and the
resulting inferred GCtree compared to the true GC-
tree (in this case they were identical). To cali-
brate simulation parameters, we defined summary
statistics on sequence data with abundance infor-
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mation, and tuned parameters to produce data sim-
ilar to experimental BCR sequencing data under
these statistics (see Materials and Methods).

Our validation shows that using abundance in-
formation via a branching process likelihood can
substantially improve inference results (Figure )
For each simulation we ranked otherwise degener-
ately optimal parsimony trees using GCtree. For
each parsimony forest, we compared the GCtrees
in the forest to the true GCtree for that simula-
tion using the Robinson-Foulds (RF) distance [39]
as a measure of tree reconstruction accuracy. The
maximum likelihood GCtree tends to be closer to
the true tree than other equally parsimonious trees,
which vary widely in accuracy, showing that GC-
tree is able to leverage abundance data to resolve
parsimony degeneracy and improve the accuracy of
tree reconstruction in this simulation regime.

Empirical validation

We next performed a biological validation by in-
vestigating if GCtree improves inference accord-
ing to biological criteria using real germinal center
BCR sequence data. The BCR is a heterodimer
encoded by the immunoglobulin heavy chain (IgH)
and immunoglobulin light chain (IgL) loci. Both
loci undergo V(D)J recombination, and then evolve
in tandem during affinity maturation. By obtain-
ing matched sequences from both loci using single-
cell isolation, we have two independent data sets to
inform the same phylogeny of distinct cells (each
of which is associated with a single IgH sequence
and single IglL sequence). Performing separate and
independent IgH and IgL tree inference, we can
then validate GCtree by comparing the inferred
IgH tree to the inferred IgL tree. If the GCtree
likelihood meaningfully ranks equally parsimo-
nious trees, then the two MLE trees (IgH and IgL)
would be expected to be more correct reconstruc-
tions than the other parsimony trees. Thus, we are
to expect that the two MLE trees are more similar
to each other (in terms of the lineage of distinct
cells) than other pairs of IgH and IgL parsimony
trees (which, if they are more distorted phylogenies,
should show less concordance in the partitioning of
the distinct cells). Conversely, if the GCtree likeli-
hood is not meaningfully ranking trees, we expect
that the MLE IgH and IgL trees will not be signif-
icantly closer to each other than other pairs of IgH

and IgL parsimony trees.

We used data from a previously reported exper-
iment in which multiphoton microscopy and BCR,
sequencing were combined to resolve individual ger-
minal center B cell lineages from mouse lymph
nodes 20 days after subcutaneous immunization
with alum-adsorbed chicken gamma globulin [46]
(see Materials and Methods). Brainbow mice were
used for multicolor cell fate mapping, enabling B
cells and their progeny to be permanently tagged
with different fluorescent proteins. In-situ photo-
activation followed by fluorescence-activated cell
sorting yielded B cells from a color-dominant ger-
minal center (Figure[dh, left). BCR sequences were
obtained for 48 cells in this lineage by single cell
mRNA sequencing of the IgH and IgL loci, resulting
in 32 distinct IgH and 26 distinct IgL genotypes due
to SHM mutations acquired through affinity mat-
uration. The unmutated naive IgH and IgL V(D)J
rearranged sequences (not observed) were inferred
with partis using each set of 48 sequences (IgH
and Igl) as a clonal family using germline genetic
information [37, B8]. These naive sequences were
used as outgroups for rooting parsimony trees.

GCtree results are depicted in Figure [b. Parsi-
mony analysis resulted in degeneracy for both loci,
with 13 equally parsimonious trees for IgH, and 9
for Igl.. Empirical Bayes point estimation accord-
ing to (2 yielded p = 0.495, ¢ = 0.388 (IgH) and
p = 0.495, § = 0.304 (IgL). GCtree likelihoods
were computed to rank the equally parsimonious
trees, and the MLE trees are shown with support
values among 100 bootstrap samples (see Materials
and Methods). Because the binary Galton-Watson
process assigns probability zero to a GCtree node
with frequency zero and one mutant descendant,
the unobserved naive root node (which had one
descendant after rerooting and collapsing identical
genotypes in all parsimony trees) was given a unit
pseudocount.

We then compared the concordance between
pairs of heavy and light trees. Since both IgH and
IgL. loci have been recorded from the same set of
48 cells, the units of cell abundance in an IgH GC-
tree map to the units of cell abundance from an
Igl. GCtree (i.e. each cell identity among the 48 is
associated with an IgH genotype and an IgL geno-
type). We can then consider the consistency of a
given IgH tree and a given IgL tree in terms of the
lineage of the 48 cell identities. For each possible
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resulting in parsimony degeneracies of 13 and 9, respectively. Maximum likelihood GCtrees for
each locus are indicated in red and the GCtrees with annotated abundance are shown. Roots are
labeled with the gene annotations of the naive state inferred using partis. Small unnumbered
nodes indicate inferred unobserved ancestral genotypes. Numbered edges indicate support in
100 bootstrap samples. (c.) All possible pairings of IgH and IgL parsimony trees were compared
in terms of the Robinson-Foulds distance between the IgH and IgL trees, labeled by cell identity.
IgH and IgL parsimony trees are ordered by GCtree likelihood rank in columns and rows, re-
spectively. Grid values show RF distance between each IgH/IgL pair. MLE trees result in more
consistent cell lineage reconstructions between IgH and IgL (smaller RF values). (d.) For each
locus, distributions of bootstrap support values are shown for the tree inferred by GCtree and
for a majority rule consensus tree of all trees in the parsimony forest. The latter contain more
partitions with very low support. (e.) Using additional data from a second germinal center
from the same lymph node that had the same paive BCR sequence, GCtree correctly resolves
the two germinal centers as distinct clades (as gid other lower ranked parsimony trees).
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pairing of an IgH parsimony tree with a Igl, parsi-
mony tree, we computed the RF distance [39] be-
tween the two trees using the cell identities (rather
than the genotype sequences) to define splits. We
observed that the GCtree MLE based on IgH se-
quences and GCtree MLE based on Igl. sequences
form the most concordant pair among all pairs of
parsimony trees (Figure ) Moreover, pairs of
parsimony trees that contained at least one GC-
tree MLE tree ranked consistently higher in terms
of their similarity.

We assessed confidence in GCtree partitions by
comparing bootstrap support values in GCtree
trees to those from the majority-rule consensus par-
simony trees made using the consense program
from the PHYLIP package [14]. We observed the lat-
ter contained an excess of very low confidence parti-
tions (Figure [d{d, Figure[S4). These results demon-
strate that parsimony reconstructions for real BCR
data sets suffer from degeneracy, and that GCtree
likelihood can correctly resolve this degeneracy by
incorporating abundance information ignored by
previously published methods.

Finally, using data collected from a second ger-
minal center from the same lymph node, we tested
GCtree’s ability to correctly group cells from each
germinal center into separate clades when run on
combined data from both germinal centers. The
two germinal center sequence data sets appeared
to have the same naive BCR sequence (IgH and
IgL), indicating they were both seeded from the
same B cell lineage. Concatenating the IgH and
Igl, sequences for each cell in each germinal cen-
ter, we used GCtree to infer a single tree for all
cells from both germinal centers (Figure , Fig-
ure . GCtree correctly resolved the two ger-
minal centers as distinct clades (we note that all
the parsimony trees had this feature, regardless of
likelihood rank). This demonstrates the phyloge-
netic resolvability of germinal centers with the same
naive BCR diversifying under selection for the same
antigen specificity.

Discussion

We have shown that genotype abundance informa-
tion can be productively incorporated in phyloge-
netic inference. By augmenting standard sequence-
based phylogenetic optimality with a stochastic
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process likelihood, we were able to implement
abundance-aware inference as a processing step
downstream of results from an existing and widely
used parsimony tree inference tool. We have shown
that our method—implemented in the publicly
available GCtree package—is useful for inferring B
cell receptor affinity maturation lineages. Although
branching processes have been used previously to
infer parameters of BCR evolution [28, [34] and con-
struct SHM lineage trees from error-prone bulk se-
quencing reads [43], to our knowledge we are the
first to use branching processes to sharpen phylo-
genetic inference for BCRs sequenced at single-cell
resolution from germinal centers.

We believe GCtree will find use in other settings
where sequence data from dense quantitative sam-
pling of diversifying loci are available. Studies of
cancer evolution are increasingly performed with
single-cell resolved sequencing, however most tu-
mor phylogenetics approaches use standard phylo-
genetic methods (reviewed by Schwartz et al. [41])
that do not model genotype abundance. Excep-
tions include OncoNEM [40] and SCITE [26], both of
which leverage single-cell data for tumor phyloge-
netic inference that is robust to genotyping errors
and missing data, but do not aim to capture the in-
tuition that genotype abundance and the number
of direct mutant descendants are related. Single-
cell implementations of lineage tracing based on
genome editing technology [35] may also benefit
from reconstruction methods that model the abun-
dance of observed editing target states, since cell
types may vary widely in rates of proliferation.

Using parsimony as our sequence-based optimal-
ity resulted in particularly simple results, as the
tree space necessary to explore is exactly the de-
generate parsimony forest. However, our empiri-
cal Bayes formulation is agnostic to the particular
choice of sequence-based optimality, so in the future
we envision augmenting likelihood-based sequence
optimality. This will require more computationally
expensive tree space search and sampling schemes.

In contrast to GCtree, a fully Bayesian approach
to incorporate genotype abundance could use the
full set of sequences (without deduplication) in
a Bayesian phylogenetics package—such as BEAST
[6]—with a birth-death process prior. This would
not enforce the infinite-type assumption, so a set
of identical sequences could be placed in disjoint
subtrees. However, such an approach will not scale



well with many identical sequences: trees that only
differ by exchange of identical sequences will create
islands of constant posterior in tree space. Meth-
ods do not currently exist for tree space traversal
that avoids moves within such islands. Even if such
methods existed, they would need to be combined
with algorithms to infer trees with sampled ances-
tors [17, 18] as well as multifurcations [31],32]; even
just this combination is not currently available.

Although our methods can be applied to other
sequence-based optimality functions besides par-
simony, it is important to recognize that GCtree
(and indeed any tree inference procedure that dedu-
plicates repeated sequences) contains an inherent
weak parsimony assumption: that each unique
genotype arose from mutation just once in the lin-
eage and therefore corresponds to a single subtree
in the lineage tree, and thus a single node in the
GCtree. Thus it is important to continue to assess
the impact of this weak parsimony assumption with
simulation that does not make this assumption, as
done here.

The GCtree framework can also be extended to
non-neutral models. For example, one could con-
sider a model in which each genotype obtains a
random fitness encoded by branching process pa-
rameters 0 that are fixed within a given genotype
but randomly drawn by the genotype founder cell
upon mutation from its parent. This will likely ne-
cessitate modeling genotype birth time explicitly,
rather than restricting to extinct subcritical pro-
cesses, since a genotype with small abundance may
be a result of low fitness or just young age. One
might also consider extending the offspring distri-
bution to separately model synonymous and non-
synonymous mutations. Synonymous mutations do
not change fitness, while nonsynonymous muta-
tions change fitness as described above. Another
direction of extension is to incorporate mutation
models specialized to the case of BCR evolution,
such as the S5F model [47] used in our simulation
study.

Supplementary Material

Supplementary Table S1 is available online.
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Materials and Methods

An empirical Bayes framework for incorporating genotype abundance in phy-
logenetic optimality.

Here we more fully develop the empirical Bayes perspective on our estimator for the model depicted in
Figure [2h. This graphical model implies the factorization

P(G,A,T,0)=P(G|T)P(A,T|6)P(6). (5)

A hierarchical Bayes treatment would assign a prior P (8) (such as uniform over the unit square for the
model 8 = (p,q)) and compute the posterior over trees conditioned on the data, marginalizing over 0:

P(T|G,A) = /d@ P(T,0 | G,A)
G A T,0
/d@ )
A)
xP(G | T)/d0 P(A,T|0)P(6).
Rather then attempting this integral over P (A, T | 8), each evaluation of which requires dynamic pro-

gramming, we first seek a maximum likelihood estimate for 8 marginalizing T

6 = argmaxP (G, A | 6)
)

=a a P(G,A,T|6O

rgm x Y P( | 6)

=argmax » P(G|T)P(A,T|6). (6)
]

Using this point estimate, an approximate posterior over trees is
P(T\G,A,é)mP(G\T)P(A,TW). (7)

This formulation embodies an optimality over trees conditioned on both genotype sequence data G and
genotype abundance data A. Evaluation of 6 with @ in general requires summation over the space of
all trees consistent with the data.

A simple application of this formalism is to augment parsimony-based tree optimality with abundance
data. Let Tg denote the degenerate set of maximally parsimonious trees given G (each of which has
the same total genotype sequence distance over its edges). Encode parsimony optimality as a P (G | T)
assigning uniform weight to each tree in 7, and zero elsewhere. In this case, becomes

= argmax Z (A, T|0), (8)
TeTa
and becomes
. P(A,T|6), te
IE”(T|G,A70)<>< ( | ) Ta 9)
0, t¢ T,

With @D, we have a framework using abundance information to distinguish among the otherwise equally
optimal trees presented by a parsimony analysis. In our application, we use a subcritical infinite-
type binary Galton-Watson branching process model for the lineage tree, and describe a recursion for

computing GCtree likelihoods P (A7 T | é) by dynamic programming to marginalize over compatible

lineage trees.
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Dynamic programming to marginalize lineage tree structure.

We derive a recurrence for fo.(p,q) =P (4; =a,T; =7 | 0 = (p,q)) by marginalizing over the outcome
{C, M} of the branching event at the root of the lineage subtree for genotype ¢ (the first cell of type
). We will use that a and 7 are the sum over two iid processes for the left and right clonal branches.
We temporarily suppress the parameters 8 = (p, q), writing f,, for notational compactness. In the case
{C =2,M =0},

P<Ai:aaTi:T|CZ27M:O Z Zfa"r’fa a', T—71' (10)
a’'=071'=

As this is the convolution of f,, with itself, we denote it as 2. Marginalizing over all outcomes {C, M},
we have

for= > PAi=a,Ti=7|C=c,M=m)P(C=c,M=m)

(e,m)eN?
= ba1870(1 = p) + fa7p(1 — @)* + (1 = 670) fa.r—12Pa(1 — @) + Sa0dr2pg®
0 a=0,7=0,1,
(1-p) a=1,7=0,
=< pg? a=0,7T=2, (11)
2p(1 — q)? a>1,7=0,

Jar—12pq(1 — q) + f22p(1 — q)* otherwise,

where J.. denotes the Kronecker delta function. In light of the first case, the convolutional square may
be written as

f;? = Z fa’T’fafa’,TfT’y
(a’,77)¢{(0,0),(a,7)}

showing that there are no terms containing f,, on the RHS of . The GCtree node likelihood f,, is
thus amenable to computation by straightforward dynamic programming.

The GCtree likelihood factorizes by genotype.
We argue that the joint distribution over all nodes in a GCtree factorizes by genotype (Figure ):

]P’(Alzal,leTl,...,AN:aN, N*TN Hfa‘r, (12)

Since 71 is the number of children of node 1 (the root node), the children of the root node are indexed
in level order by 2,...,1 + 7. Let A; denote the set of indices of the nodes of the subtree rooted at
node i, 80 Aa, ..., A1y, refer to sister subtrees rooted on each of the 7 children of the root. Using the
definition of conditional probability, and since sister subtrees are independent, we have

P(ay,71,...,an,75) =P (a2, 72, ...,an,n | a1,71) P (a1, 1)
1+71

falfl H ]P aj7Tj ] S A’L})?

where random variable notation has been dropped for notational compactness. Now, within each subtree
factor we may reindex in level order (that is, level order in that subtree) starting from 1. We then pull
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out factors fa,rys -+ fay,, iy, corresponding to the root nodes of the sister subtrees (children of the
original root). We obtain by applying this logic recursively. Restoring the offspring distribution
parameters, we recognize this as the distribution needed in and to rank trees in a parsimony
forest:

N
P(T: (7-17"'aTN)7A: (ala-”aaN) | 0= (p7Q)) :Hfain (paQ)v (13)

where f,,7, (p,q) is computed by dynamic programming using (11)).

Numerical validation of the GCtree likelihood is summarized in Figure[S3|using 10,000 Galton-Watson
process simulations at each of several parameter values. The likelihood accurately recapitulates tree
frequencies, and simulation parameters are recoverable by numerical maximum likelihood estimation.

Simulation details.

To provide for a more challenging in silico validation study, several biological realisms were built into
our simulation that defied simplifying assumptions in the GCtree inference methodology.

Arbitrary offspring distribution.

The recursion used to compute GCtree likelihood components specifies a binary branching process,
and such an approach would in general require an offspring distribution with bounded support on the
natural numbers. Our simulation implements an arbitrary offspring distribution with no explicit bound-
ing. In the results that follow, we used a Poisson distribution with parameter X\ for the expected number
of offspring of each node in the lineage tree.

Context sensitive mutation.

To generate mutant offspring, all offspring sequences (drawn from a Poisson as described above) were
subjected to a sequence-dependent mutation process. The SHM process is known to introduce mutations
in a sequence context-dependent manner, with certain hot-spot and cold-spot motifs [8, 44]. We used
a previously published 5-mer context model S5F [47] to compute the mutabilities uq, ..., ue of each
position 1, ..., ¢ within a sequence of length ¢ based on its local 5-mer context. This model also provided
substitution preferences among alternative bases given the 5-mer context. To compute mutabilities for
beginning and ending positions without a complete 5-mer context, we averaged over missing sequence
context.

Although existing code can simulate a mutational process parameterized by S5F on branches of a
fixed tree with a pre-specified number of mutations on each branch [I9], in our simulations we wanted
the number of mutations on the branches to be determined by the sequence mutability as it changes
via mutation across the tree. For example, as an initial mutation hotspot motif acquires mutations
down the tree, its mutability typically degrades as it diverges from the original motif. We defined the
mutability of the sequence as a whole by the average over its positions pg = %Zle 1. We defined a
baseline mutation expectation parameter \g as a simulation parameter, and the number of mutations
m any given offspring sequence received was drawn from a Poisson distribution. The Poisson parameter
was modulated by the sequence’s mutability m ~ Pois(ugAp), so that more mutable sequences tended
to receive more mutations. Given m > 0, the positions in the sequence to apply mutations were chosen
sequentially as follows. A site j to apply the first mutation was drawn from a categorical distribution
using the site-wise mutabilities to define relative probability of choosing each site j ~ Cat(uq, ..., ).
We mutated the site using a categorical distribution over the three alternative bases parameterized by
the substitution preferences defined by the site’s context. We then updated mutabilities o and pq,

.., k¢ as necessary to account for contexts that had been altered by the mutation. This process was
repeated m times.
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Since the mutability of each node in the lineage tree will depend on the mutation outcome of its
parent, the GCtree likelihood components will not factorize by genotype. Because the probability of
mutation is sequence-dependent, the topology of the GCtree will be sequence-dependent. Therefore, the
generative assumptions of the empirical Bayes inference do not hold in this simulation scheme, nor does
the offspring distribution equivalence across lineage tree nodes specified by .

Sampling time.

Our inference model specifies a subcritical branching process run until extinction, and sampling of all
terminated nodes (leaves). Our simulation more realistically assigns a discrete time of sampling param-
eter t (number of time steps from root), and thus does not need to constrain the offspring distribution
to achieve subcriticality. At the specified time, extant nodes can be sampled, so all genotypes that
terminated or mutated at a prior times are not observed. Alternatively, a parameter N specifying the
desired number of simulated observed sequences may be passed, in which case the simulation runs until
a time such that at least N sequences exist (unless terminated). Genotypes born at different times will
be sampled under a process with different effective sampling times since birth. Thus this sampling time
parameter also increases dependence between genotypes, further distancing the simulation model from
the inferential model.

Incomplete sampling.

We introduce imperfect sampling efficiency with a parameter n for the number of simulated sequences
that end up in the simulated sample data (FASTA), requiring n < N. This violates the inferential
assumption of complete sampling, and renders the true genotype abundances latent variables (which a
more complete likelihood approach might aim to marginalize out).

Repeated genotypes.

Our simulation is seeded with an initial naive BCR sequence, from which randomly mutated offspring
are created. Because there is no built-in restriction that the same sequence cannot arise along different
branches (or mutations could be reversed), the model assumption of infinite types—such that identical
sequences can be associated with a single genotype subtree—does not necessarily hold. When this
assumption is violated the tree must necessarily be incorrect.

Calibrating simulation parameters using summary statistics.

We defined several summary statistics on sequences equipped with abundances which were used to
calibrate simulation parameters representative of a regime similar to experimental data. We chose these
statistics to reflect information relevant to tree inference, but not actually require tree inference, so as to
avoid circularity. Denote gyg € G as the naive BCR (root genotype) and dg (-, ) as the Hamming distance
function between two sequences. Given simulation or experimental data G and A, we characterize the
degree of mutation (from naive BCR) in the lineage by the set of Hamming distances of the observed
genotypes from the naive genotype: {du(g,9,),9 € G}. For a given genotype g; € G, we can compute
its number of Hamming neighbors in the data n; = [{g; € G : du(gi,g;) = 1}].

A simulation is specified by parameters (A, Ao, N (or t),n), a mutability model (here S5F [47]), and
an initial sequence. We found parameters (A = 1.5, Ao = 0.25, N = 100, n = 65) produced simulations
that were comparable to experimental data under these statistics. The experimental data used for
comparison, consisting of 65 total BCR V gene sequences from a single germinal center lineage, is
described in the following section. Figure depicts these summary statistics for 100 simulations,
compared to experimental BCR data.
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Germinal center BCR sequencing.

Germinal center B cell lineage tracing and B cell receptor sequencing was performed as previously
described [46]. Full length IgH and IgL sequences from lymph node 2 germinal centers 1 and 2 from
this reference were used for empirical validation results, while V gene sequences only (which are not
dependent on partis-inferred naive sequences) were used for calibrating simulation parameters.

Bootstrap support.

We computed bootstrap support values for edges on a GCtree extending the standard approach [12]: we
resampled columns from the alignment G 100 times with replacement, generating an inferred GCtree
(maximum GCtree likelihood among equally parsimonious trees) for each. Each edge is equivalent to a
bipartition of observed genotypes obtained by cutting the edge; such a bipartition is typically referred
to as a split. We compute the number of bootstrapped trees that contain the same split, and annotate
the edge with this number. Because resampling the alignment G can produce repeated genotypes, there
can exist ambiguity about how to perform genotype collapse of a parsimony tree. We simply group
genotypes in the bootstrap analysis that collapse to identical genotypes. For example, if two observed
sister genotypes with resampled sequences are both identical in sequence to their mutual parent, both
have a claim on collapsing into the parent. When collapsing this tree, both genotypes will be associated
with this collapsed node, rather then just a single one.

Data availability.

Germinal center BCR sequence data can be found in Supplementary Database S1 of Tas et al. [46],
lymph node 2 and germinal center 1.

Software availability.

The GCtree source code is available at igithub.com/matsengrp/gctree/and accepts sequence alignments
in FASTA or PHYLIP format as input. It is open-source software under the GPL v3.
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Figure S1: Runtime experiments. Runtime for generating parsimony trees with dnapars and
ranking using GCtree are shown. Fixed simulation parameters were A = 1.5, Ag = .25, and 20
simulations were performed at each value for the number of cells (N = 50, N = 100, N = 150).
These runtime experiments were performed on a laptop with a 2.9GHz CPU and 16GB RAM.
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Figure S2: Simulation summary statistics. simulation parameters: A = 1.5, Ay = .25,

N = 100, n = 65. (a.) The empirical CDF over genotypes of Hamming distance to the
naive genotype for 100 simulations (colors) and germinal center BCR data (black). (b.) The
distribution over genotypes of number of Hamming neighbors and genotype abundance for 100
simulations (colors) and germinal center BCR data (black).
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Figure S3: Numerical validation of GCtree likelihood. Colors indicate simulation parameters.
(a.) At each parameter value (p, ¢), 10,000 Galton Watson processes were simulated. For
each distinct GCtree, the likelihood was computed according to , and the frequency of the
tree (number of times this distinct tree occurs among the 10,000) was recorded. Dashed lines
indicate the expected frequencies (likelihood multiplied by 10,000). (b.) Each set of 10,000
trees was partitioned into 10 groups of 1000, and maximum likelihood estimates (p, §) were
computed for each set of 1000 by numerical maximization of .
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