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Abstract A time-tree is a rooted phylogenetic tree such that all internal nodes are
equipped with absolute divergence dates and all leaf nodes are equipped with sam-
pling dates. Such time-trees have become a central object of study in phylogenetics
but little is known about the parameter space of such objects. Here we introduce
and study a hierarchy of discrete approximations of the space of time-trees from the
graph-theoretic and algorithmic point of view. One of the basic andwidely used phylo-
genetic graphs, the NNI graph, is the roughest approximation and bottom level of our
hierarchy. More refined approximations discretize the relative timing of evolutionary
divergence and sampling dates. We study basic graph-theoretic questions for these
graphs, including the size of neighborhoods, diameter upper and lower bounds, and
the problem of finding shortest paths. We settle many of these questions by extending
the concept of graph grammars introduced by Sleator, Tarjan, and Thurston to our
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graphs. Although time values greatly increase the number of possible trees, we show
that 1-neighborhood sizes remain linear, allowing for efficient local exploration and
construction of these graphs.We also obtain upper bounds on the r -neighborhood sizes
of these graphs, including a smaller bound than was previously known for NNI. Our
results open up a number of possible directions for theoretical investigation of graph-
theoretic and algorithmic properties of the time-tree graphs. We discuss the directions
that are most valuable for phylogenetic applications and give a list of prominent open
problems for those applications. In particular, we conjecture that the split theorem
applies to shortest paths in time-tree graphs, a property not shared in the general NNI
case.

Keywords Phylogenetic inference methods · Phylogenetic time-tree · Nearest
neighbor interchange graph

Mathematics Subject Classification 92B05 · 68R10 · 68Q25

1 Introduction

The last 10 years have seen an explosion of methods using sequence data to infer
demographic model parameters by sampling phylogenetic trees (Kuhner et al. 1995,
1998, 2000; Beerli and Felsenstein 2001; Kuhner 2006; Drummond et al. 2002, 2005,
2006; Minin et al. 2008). These methods have had an especially significant impact in
inferring historical epidemic spreading rates of viruses and other evolutionary param-
eters of quickly evolving organisms. For example, such methods can be used to infer
time to a most recent common ancestor of human HIV group M viruses (Worobey
et al. 2008; Baele et al. 2013). Thus the time-tree—a rooted phylogenetic tree with
all internal nodes equipped with absolute divergence dates—has become an important
object of investigation. This interpretation of continuous parameters for time-trees
stands in contrast to that for classical phylogenetic trees, in which branch lengths
quantify the amount of molecular substitution along a branch. Posterior distributions
on both time-trees and classical trees are estimated using Markov chain Monte Carlo
(MCMC) (Mau and Newton 1997; Yang and Rannala 1997; Drummond et al. 2002),
but with different transition kernels. This paper builds a foundation for a mathematical
understanding of time-trees, such as understanding convergence properties of MCMC
thereupon.

Although Markov chain Monte Carlo (MCMC) is guaranteed to sample from the
true posterior given an infinite run time, it is important to understandmixing properties
of the chain, which determine sampling properties for a finite time run. The mixing
properties of phylogenetic MCMC have, in the classical unrooted case, been a major
area of research from both the theoretical perspective of mixing time bounds (Mossel
and Vigoda 2005, 2006; Štefankovič and Vigoda 2011; Spade et al. 2014) and the
practical perspective of performance on real data (Beiko et al. 2006; Ronquist et al.
2006; Lakner et al. 2008; Whidden and Matsen IV 2015). This research has focused
on mixing over the set of discrete phylogenetic tree graph structures, because mixing
over these discrete structures is the primary obstruction to MCMC convergence.
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The combinatorics of discrete time-trees

Time-trees use different MCMC transition kernels than do classical phylogenetic
trees. The discrete component of MCMC moves between classical phylogenetic trees
are typically determined by their discretization. For example, common moves include
subtree prune and regraft (SPR) moves, which cut a subtree off and reattach it at
another location, and the subset of SPR moves called nearest-neighbor interchange
(NNI) moves. Classically, these are applied without reference to branch lengths. On
the other hand, the discrete component of moves between time-trees are defined also
in terms of their timing information. For example, Hohna et al. (2008) show that SPR-
like moves that reattach subtrees at the same divergence time are more effective than
ones that do not. This sort of move cannot be expressed using the type of discretization
used thus far in which all continuous information is lost, and so the previous work on
MCMC mixing cannot be applied.

However, one can discretize time-trees in a way that does preserve some of the
information. For example, by retaining the order of internal nodes backward in time
one obtains a so-called ranked tree (Semple and Steel 2003). To make a less rough
approximation of a time-tree, one can allow the time periods between nodes of the
tree to take only finitely many possible values (Åkerborg et al. 2008). This results
in an object we call a discrete time-tree. The graph built on such trees provides a
discretization of the space of time-trees, which we call a discrete time-tree graph. By
a graph on a set of trees here and throughout the paper we mean a graph consisting of
trees as vertices, with edges connecting pairs of trees that are identical after a given tree
rearrangement operation (Semple and Steel 2003). This graph-theoretic terminology
is convenient and has become widespread in recent years (Spade et al. 2014; Whidden
and Matsen IV 2015; Gavryushkin and Drummond 2016). A sequence of time-trees
sampled usingMCMC projects to a collection of movements on a graph in which each
vertex is a discrete time-tree and each edge is a discrete version of an MCMC move
on time-trees.

Although inferential algorithms have applied MCMC on time-trees for over a
decade, and graphs corresponding to discretizations of unrooted tree space have been
studied for even longer, we are not aware of any work defining graphs from discretiza-
tion of time-tree spaces or analyzing random walks thereupon. Such a theory would
provide a foundation for understanding the behavior of MCMC algorithms on time-
trees, as has been done previously for graphs associated with unrooted phylogenetic
trees. Up to now, the only discretization of time-tree space is that of ranked trees (Page
1991; Ford et al. 2009; Lambert and Stadler 2013), and the corresponding graphs have
not been studied.

In this paper we initiate the mathematical study of discrete time-tree graphs, obtain
basic geometric and graph-theoretic results, and compare these results to those in
the classical phylogenetic setting. In particular, we focus on ranked trees, discrete
time-trees (as defined above), and the ultrametric versions of those types of trees.
We establish size bounds for neighborhoods and diameters in these tree spaces and
show how those bounds can be used to develop efficient tree search algorithms such
as MCMC. The importance of these basic geometric characteristics in phylogenetics
and other areas of evolutionary biology is highlighted in Huber et al. (2011).
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2 Technical introduction

Throughout the paper by a (phylogenetic) tree we mean a rooted binary tree with
designated leaves, that is, an undirected acyclic graph with the following properties:
(1) all nodes have degree 1, 2, or 3; (2) there exists exactly one node of degree 2, this
node is called the root of the tree; (3) all nodes of degree 1 are labeled by distinct
identifiers, these nodes are called leaves or taxa (singular taxon). The parent of a node
x in a tree is the unique node y that is both adjacent to x and closer to the root of the
tree than x . Every node of a tree has a parent except for the root, and is called the child
of that parent.

We fix the number of leaves of the trees and denote this number by n throughout the
paper. We also assume that each tree with n leaves uses the same fixed set of n labels
to mark the leaves. Hence, we say that two trees are isomorphic if they are isomorphic
as graphs and the isomorphism maps leaves marked by the same label to each other.
We do not distinguish between isomorphic trees, i.e. we identify them.

By a time-tree (Fig. 1) wemean a phylogenetic tree with an absolute time associated
with every node of the tree so that the time strictly increases along every path froma leaf
to the root: for internal nodes the time is interpreted as (typically estimated) divergence
time and for leaves it is the (typically known) sampling time. By “absolute” we clarify
that these are not relative times, but rather actual times that can be put on a calendar.
We assume that time progresses backward, from the leaves to the root.

A discrete time-tree is a tree such that all its nodes are assigned distinct times from
the set of non-negative integers and every node has a smaller time than its parent
(Fig. 1). Note that this implies that for every pair of nodes x, y if the shortest path
from the root to x passes through y then the time of y is greater than the time of
x . Each node is associated with a type of event: internal nodes represent divergence
events, while leaf nodes represent the sampling of new taxa. The rank of a node is the
number of nodes in the tree with strictly smaller time. We say that a pair of nodes x, y

B

A

C

D

E

F

Time

0
1
2
3

5
6
7

9

11
12
13

Fig. 1 Time-tree on 6 leaves. Time is measured by non-negative real numbers. If all times are integers, the
tree is a discrete time-tree
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Fig. 2 All possible moves performed on intervals I and J . Assuming that the length of every event interval
is either 1 or 2, the outer trees are all possible neighbors in DtT of the tree in the middle obtained by moves
performed on intervals I and J . The trees on the right are obtained by moves performed on interval I and
those on the left on J

of a discrete time-tree is an event interval if there exists no node z such that the time
of z is between the time of x and y. Hence, an event interval is an interval between
two divergence events, a taxon and a divergence event, or two taxa. Note that taxon
events can be younger than divergence nodes, i.e. when the sampling time precedes
divergence events on the tree. The difference between the times of x and y is called the
length of the interval x, y. We identify two discrete time-trees if they are isomorphic as
trees and the isomorphismpreserves ranks of the nodes aswell as event interval lengths.

We are now ready to introduce a hierarchy of discrete time-trees. At the bottom
level of our hierarchy is the well-known NNI graph, which does not have timing
information. NNI is a graph with the vertices being all trees on n leaves. Two trees T
and R are adjacent in NNI if there exists an edge e in T and an edge f in R such that
both edges are not adjacent to a leaf and the graph obtained from T by shrinking e to
a vertex is isomorphic to the graph obtained from R by shrinking f . We denote this
graph by DtT0, where DtT stands for “discrete time-trees”.

The following graph DtTm forms the level m > 0 of the hierarchy. The set of
vertices of the graph is the set of all discrete time-trees on n leaves such that every
event interval has its length not greater than m. Two trees T and R are adjacent in
DtTm if R can be obtained from T by one of three operations: a length move performed
on interval I , swapping the rank of two nodes x and y on interval I or an NNI move
performed on interval I (Fig. 2). A lengthmove changes the length of I by 1. Swapping
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Fig. 3 Trees T and R are at DtT2 distance 3. To move from T to R in DtT2, one must decrease the length
of interval I , swap the ranks of nodes A and C bounding interval J , and perform an NNI move on interval
K , resolving nodes C and D

the rank of two nodes swaps the times of the nodes; such a swap is only possible when
the nodes bound an event interval I of length 1. R can be obtained from T by an NNI
move if there exist event intervals IT and IR of length 1 in T and R, respectively,
such that the graphs obtained by shrinking IT and IR to vertices are isomorphic and
the isomorphism preserves the lengths of the event intervals. In other words, by going
from one tree to an adjacent tree in the DtTm graph we can either change the length of
one event interval by one unit, swap the rank of two nodes bounding an event interval
of minimal length, or send the length of an event interval of minimal length down
to zero and then resolve the multifurcation to either of the two possible trees. In the
latter case, the new interval is of minimal length. See Fig. 3 for an example of the full
variety of possible moves.

Note that DtT0 can be obtained from DtT1 by “forgetting” ranks and DtT1—from
DtTm by forgetting lengths. In general, the graph structure form > 1 can be understood
by considering all four-tree diagrams as the four trees on the right in Fig. 2 and
introducing an extra layer of nodes in every tail adjacent to the NNI triangle.

This hierarchy can be seen as a set of discrete refinements of the full space
of phylogenetic time-trees, where event intervals can take an arbitrary real value.
Indeed, if we allow the lengths of event intervals to take every possible non-negative
real value and impose the Euclidean metric on trees with the same ranked topol-
ogy, then we get the τ -space introduced by Gavryushkin and Drummond (2016). In
this case, DtT1 is the graph with the vertices being the orthants of τ -space and the
adjacency relation being the relation of “have a shared facet of co-dimension 1.”
Similarly DtT0 is the adjacency graph on the orthants of BHV space (Billera et al.
2001).

The DtTm graph on ultrametric trees, that is the set of trees such that each leaf
has the same time, is denoted by DtTum . The DtT1 graph is denoted by RNNI and
called the ranked NNI graph; on ultrametric trees we will denote it RNNIu. The R in
RNNI stands for ranked and not for rooted. We emphasize that although this is the
RNNI graph, NNImoves can be applied to trees in any of the spaces considered (under
appropriate conditions). For simplicity, we use the generic identifier DtT to refer to a
DtTm with an arbitrary m > 1.
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A graph can also be seen as a metric space where the distance is given by the length
of a shortest path, so we will refer to DtTm and other graphs introduced above as both,
in agreement with Semple and Steel (2003).

3 Geometry and complexity of discrete time-trees

We begin by considering the shortest path distance on the graphs. It is well-known that
computing distances is NP-hard in NNI (Dasgupta et al. 2000). Hence the following
question is natural.

Problem 1 What is the complexity of computing the distance between two discrete
time-trees?

Although this problem remains open, we make progress towards the solution by
establishing several geometric and algorithmic properties of these graphs. First, we
demonstrate in the following example that even for caterpillar trees the complexity
cannot be derived from that of NNI distance. A caterpillar tree (sometimes called a
ladder tree) has all leaves connected to a single path from the root. A cherry is a pair
of taxa adjacent to a common internal node in the tree.

Example 2 (see Fig. 4) Let T be the ultrametric caterpillar tree denoted ((((((1, 2), 3),
4), 5), 6), 7) in Newick notation (Felsenstein et al. 1990) and R be the ultrametric tree
((((((1, 4), 5), 6), 2), 3), 7). Then a shortest NNI path is given by first making a cherry
(2, 3), then moving the cherry up to the split 1456 | 7, and then resolving the cherry
back. In RNNIu this path is not shortest, and one shortest path moves the parents of 2
and 3 up independently.

A set of trees A is called convex if for every pair of trees from A, there exists a
shortest path between them such that every tree on the path belongs to A. Example 2
can be generalized to show that the set of trees of the form (. . . (1, i2), . . . , in−1), n),
where {i2, . . . , in−1} = {2, . . . , n − 1}, is convex in DtT and is not convex in NNI.
Indeed, the example shows that if two leaves have to be moved up, they can be moved
independently along a shortest path. The generalization of this statement to an arbitrary
number of leaves implies convexity in DtT, while the need to group leaves in NNI as
in the previous example shows non-convexity in NNI space. This basic difference in

Fig. 4 Shortest paths in NNI may not be shortest in RNNI
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the structure of the two graphs suggests that the complexity of computing the distance
is likely to be different.

We proceed by establishing basic geometric properties of discrete time-trees.

3.1 Sizes of neighborhoods

We first bound the number of trees in each graph. As expected, times greatly expand
the size of the graphs.

Lemma 3 (see Semple and Steel (2003)) Let |V | be the number of vertices in the
graph, then |V | is equal to

(n − 1)! n! n!mn−1

2n−1 in DtTm,
(n − 1)! n!mn−1

2n−1 in DtTum,

(n − 1)! n! n!
2n−1 in RNNI,

(n − 1)! n!
2n−1 in RNNIu,

(2n − 3)!! in NNI.

Proof The proof for NNI can be found in Semple and Steel (2003). The rest follow
using similar arguments. ��

We continue by tightly bounding the sizes of 1-neighborhoods of various discretiza-
tions of the space of time-trees. Each has a 1-neighborhood size that is linear in n
allowing for efficient local traversal and enumeration, a property of importance for
phylogenetic algorithms, e.g. tree proposals in MCMC.

Lemma 4 Let T be a tree on n leaves and deg(T ) the number of trees adjacent to T .
Then

2(n − 1) ≤ deg(T ) ≤ 5n − 6 in DtT, n − 1 ≤ deg(T ) ≤ 3n − 5 in DtTu,

n − 1 ≤ deg(T ) ≤ 3n − 4 in RNNI, n − 1 ≤ deg(T ) ≤ 2n − 4 in RNNIu,

deg(T ) = 2n − 4 in NNI.

All bounds are tight.

Proof We prove the bounds by providing exemplar trees with the specified degrees
and explaining why no tree can have a greater (or lesser) degree. Recall that m > 1
is the maximal possible length of an event interval in a tree from DtT. The lower
bound in DtT is attained by any tree with all event intervals being of length m. In
this case, deg(T ) is simply the number of event intervals, since every event interval
adds 1 to the total degree of the tree. Other trees have the same or more possible event
interval changes, showing that this is a lower bound. The upper bound is attained
by a caterpillar tree with all intervals short, every taxon being younger than every
divergence event, and both taxa in the cherry being younger than at least one other
taxon, that is, a caterpillar tree with internal nodes having ranks n, . . . , 2(n − 1) and
the ranks of the taxa in the cherry < n−1. In this case, deg(T ) is bounded by the sum
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of the 2(n− 1) possible interval length changes, at most 2(n− 2) NNI neighbors, and
at most n rank changes that can occur between the n taxa and the root of the cherry. In
total, deg(T ) ≤ 2(n − 1) + 2(n − 2) + n = 5n − 6. Note that this is an upper bound
indeed, as each of the 2(n − 2) intervals excluding the most recent can contribute
either a rank change or 2 NNI moves. The caterpillar tree described above maximizes
the number of intervals that contribute 2 NNI moves and enables the rest of intervals
to contribute a rank change.

For ultrametric trees, the number of event intervals is n−1, hence they add n−1 to
the degree of the caterpillar tree from interval length changes. The number of intervals
on which an NNI move is possible is n−2 for ultrametric trees, hence they contribute
2(n − 2) to the degree. In total, this gives the upper bound of 3n − 5 for ultrametric
trees.

EveryNNImove results in twoneighbors, so the equality deg(T ) = 2(n−2) follows
for the NNI graph. Indeed, no NNI move can be performed on an edge adjacent to
a taxon, exactly two NNI moves can be performed on every edge between internal
nodes (the number of which is n − 2), and no two trees obtained by an NNI move
performed on different edges are identical.

The lower bound in RNNI is attained by the caterpillar-tree where taxa get ranks
0, 1, 3, 5, . . . , 2n−3 and internal nodes get ranks 2, 4, 6, . . . , 2n−2. In other words,
the divergence events alternate with the taxa in the ranked topology of the tree so that
if we parse the tree from the present to the past, we meet the nodes in the following
order: taxon, taxon, coalescence, taxon, coalescence, taxon, coalescence, and so on.
In this case, intervals bounded by a taxon from below add nothing to the degree of the
tree and intervals bounded from below by an internal node add one each, hence n − 1
in total. The upper bound for both RNNI and RNNIu is obtained in the same way as
for DtT.

For the lower bound in RNNIu, we note that the oldest event interval (the one
adjacent to the root) necessarily contributes 2 to the degree. Hence the lower bound
can be reached by a tree such that no other interval contributes more than 1. The degree
of such a tree is n − 1 in RNNIu. ��

Lemma 4 gives tight bounds for the number of trees in a 1-neighborhood, while the
following theorem gives an upper bound for the number of trees in an r -neighborhood.
The best known upper bound for NNI that we are aware of is 3n−224r (Li et al. 1996).
We obtain a smaller bound for RNNIu and, hence, improve the result for NNI as well.

Theorem 5 The number of trees within distance r from any given tree is at most

3n+2r−1 in RNNIu, 32n+2r−1 in RNNI,

4n+2r−1 in DtT, 42n+2r−1 in DtTu.

Proof We describe the proof in detail for RNNIu and then explain how to modify the
proof for the other three graphs. The proof employs the technique by Sleator et al.
(1992) for counting paths in a graph using a graph grammar. A graph grammar is a
method of encoding each possible graph as a finite set of productions (described more
formally below). Given the grammar, the number of possible productions to the power
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of the encoding length for a given neighborhood radius gives a simple upper bound on
the number of trees in a neighborhood. Specifically, Theorem 2.3 from Sleator et al.
(1992), adapted to trees, states the following:

Let T be a tree with h nodes, including all internal nodes and taxa, � be a graph
grammar, d be the number of vertices in left sides of �, and k be the maximum
number of nodes in any right side of a production of �. Let R(T, �, r) be the
set of graphs obtainable from T by derivations in � of length at most r . Then
|R(T, �, r)| ≤ (d + 1)h+k·r .

We first apply Theorem 2.3 from Sleator et al. (1992) and then improve the bound
using specific properties of the RNNIu graph. We note that since our trees are ranked
trees, they possess additional structure (ranking) on top of the tree graph structure,
hence we will be applying the same style of argument as in Sleator et al. (1992) but
to a somewhat different structure.

We now introduce the graph grammar for RNNIu. Since we will apply the graph
grammar to modify trees, we use the graph-theoretic terminology here and recall that
a tree is a graph. A graph grammar consists of a finite set of productions {Li →i Ri },
where Li and Ri are connected undirected edge-end labeled graphs and →i is a
one-to-one map between half-edges of Li and those of Ri . Here, for every edge in
the tree we distinguish between its two ends and refer to them as half-edges—this
is necessary to be able to substitute one subgraph by another in a unique way by
connecting corresponding half-edges—as in Sleator et al. (1992). The productions are
then applied to the starting tree T to derive all possible trees at RNNIu distance up to
r from T . By a running tree at stage s we mean the tree obtained after s applications
of the production rules in the derivation. A production is said to be ready at a stage
s of the derivation if the running tree at stage s has a subgraph isomorphic to the
left side Li of the production. A ready production can be applied to the running tree
by destroying all nodes corresponding to the left side of the production under the
isomorphism and replacing them with the right side Ri of the production. The map
→i of the production then says how to reconnect the right side of the production to
the half-edges of the running tree that were created after the destruction. The obtained
tree is the new running tree for the next stage s + 1 of the derivation. See Sleator et al.
(1992) for precise definitions and details.

The graph grammar for RNNIu is the grammar � shown on Fig. 5. Note that the
definition of a graph grammar requires the left sides Li to be connected and we have
a disconnected left side in the third production. We can adapt our graph grammar to
fit this requirement by noting that the nodes on the left side of the production must be
of consecutive ranks, so we consider those nodes as being adjacent via a second type
of adjacency relation by declaring nodes with consecutive ranks to be adjacent. This
second type of relation is in addition to the first type of adjacency relation given by
the branches of the tree. Furthermore, this second type of adjacency allows us to avoid
considering two separate moves for the left and right sister nodes. Indeed, the half-
edge labels order the edges to make the distinction between left and right, however
since our nodes are ordered via ranking, this ordering of edges is irrelevant. We will
further exploit this important property below, where we improve the bound obtained
directly from grammar �.
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Fig. 5 Graph grammar � for RNNIu. Maps →i are shown by dashed lines. In the first two productions,
the edge-ends marked by β and γ without dashed lines are mapped to each other: top γ to top γ , β to β,
bottom γ to bottom γ . In the last production, edge-ends marked by the same label are mapped to each other.
All pairs of nodes on both sides of each production must be of consecutive ranks. The first two productions
correspond to an NNI move, while the last production corresponds to rank change

The number of vertices in left sides of � is 6, the maximum number of vertices in
any right side of a production of � is 2. Since the number of internal nodes of a tree on
n leaves in RNNIu is n − 1, directly applying Theorem 2.3 from Sleator et al. (1992)
we get the bound of 7n+2r−1.

123



A. Gavryushkin et al.

This bound can be improved following the techniques described in Sects. 3.2–3.4 of
(Sleator et al. 1992, see also Sect. 5) by bounding the number of possible productions
available at a given time by a number smaller than their total. Every node of a tree in
any application of a production of grammar � can play either of two roles: top node
or bottom node. Hence to indicate that a pair of nodes is ready for being destroyed
and replaced using a production, we must specify which node is a top node and which
is a bottom node. We use a total of three node-labels (Sleator et al. 1992 call these
“labels of vertices”) to identify these two roles and to distinguish which of the two
possible NNI moves is applied. We claim that three node-labels a, b, c is enough to
specify which productions can be applied to a given tree. We must redefine the notion
of readiness to verify this claim. We say that a pair of consecutive nodes is ready if
the node-label of the bottom node is a and the node-label of the top node is either b or
c. If two consecutive nodes are ready and not connected by an edge in the tree, then
only the rank move is possible. If they are, the type of the move is determined by the
node-label of the top node. Hence, this notion of readiness uniquely identifies which
of the three productions is applied.

Sleator et al. (1992) use a special node-label, called the “zero label”, to mark nodes
that should not be destroyed. They also explain how to eliminate the zero label in
various cases. In our case, we can use one of the labels that are already in use, namely
node-label a. That is, to indicate that a node v should never be destroyed, we label the
node with an a. This labeling will indeed preserve the node v because of the following.
If w is the node directly succeeding v at some step of the derivation then w can only
be marked with an a and hence the pair v,w is not ready. If w is the node directly
preceding v at some step of the derivation then the pair w, v is never ready. Hence v

is preserved in either case.
Thus, all possible configurations encoded by the six nodes on the left sides of

the productions of � can be encoded using three node-labels. This implies that the
derivation can be encoded by a ternary sequence of length n−1+2r . Indeed, the first
n − 1 entries of the sequence are needed to encode all possible node-labelings of the
initial tree, plus two entries are needed for each of the r applications of productions
because every production creates two newnodes, each ofwhich has to be node-labeled.
The number of such strings, 3n−1+2r , gives the desired improved bound.

The proof for the other three spaces follows similarly.
For RNNI, we extend the graph grammar � by two productions, namely, one for

the move when two taxa swap their ranks and one for the move when a taxon and an
internal node swap their ranks. Since in both of these productions the only possible
type of move is the rank move, two node-labels is enough for these productions. Since
the number of (internal and leaf) nodes in an RNNI tree is 2n − 1 and the maximum
number of nodes on right sides of the productions is still 2, the desired bound is
32n−1+2r .

For DtTu, we have to extend the grammar � by two productions, namely, one for
increasing the length of the branch between two nodes in the production and one for
decreasing. This increases the number of necessary node-labels by one. Indeed, if a
production has a long event interval on the left side, three node-labels are enough to
indicate whether the event interval length increases or decreases. Alternatively, if a
production has a short event interval on the left side, three node-labels are needed for
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the top node to indicate the type of move to apply: a length increase move, one of the
two possible NNI moves, or a rank swap move. Together, this requires 4 node-labels
and the desired bound is 4n−1+2r .

For DtT, we extend the grammar constructed for DtTu by four productions, namely,
one for the move when two taxa either swap their ranks or increase the interval length
between them, one for the move when two taxa either increase or decrease the interval
length between them, one for the move when a taxon and an internal node either
swap their ranks or increase the interval length between them, and one for the move
when a taxon and an internal node either increase or decrease the interval length
between them. All these moves require three node-labels, hence the desired bound is
42n−1+2r . ��

3.2 Diameter of the graphs

Since Theorem 5 bounds the sizes of r -neighborhoods by functions of the form
a f (n)+2r , the following corollary bounds the diameters of the graphs under consider-
ation from below.

Corollary 6 Let�(G), |G|, and δr (G) be the diameter, the number of vertices, and the
number of vertices within distance r from any given vertex in graph G, respectively. If
δr (G) = a f (n)+2r then

�(G) ≥ 1

2
loga

|G|
b

,

where b = a f (n). In particular, �(RNNIu) ≥ 1
2 log3

(n−1)! n!
6n−1 .

Proof We note that every r that satisfies the inequality δr (G) < |G| is smaller than
the diameter, that is, �(G) > r for all such r . By taking loga(·), the former inequality
is equivalent to loga b + 2r < loga |G|, that is, to r < 1

2 loga
|G|
b . Hence, the desired

inequality. ��
Now we estimate the diameter of the graphs from above, complementing the above

lower bounds. Recall that �(G) is the diameter of graph G.

Theorem 7 For n ≥ 4, �(RNNIu) ≤ n2 − 3n − 5

8
.

Proof Let T and R be trees in RNNIu. We show that there exists a path between them
of length n2 − 3n− 5

8 or shorter. We denote the taxa on one side from the root of T by
A and the rest of the taxa by B. Let A = A1 ∪ A2 and B = B1 ∪ B2 so that the root
of R splits the taxa into A1 ∪ B1 and A2 ∪ B2. Note that all Ai ’s and Bi ’s have to be
disjoint. We assume that |A1| = |A2| = |B1| = |B2| = n−1

4 and denote this number
by s. We will see later in the proof that this assumption does not restrict the generality
of our argument.

We construct the path from T to R proceeding in the following steps, which are
illustrated on Fig. 6. Let f (n) be the desired upper bound. For move counts in the
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Fig. 6 An algorithm to compute a (not necessarily shortest) path between discrete time-trees. Although
the trees at steps (6) and (7) look identical, the topologies inside the triangles are different: those at step
(6) correspond to the restriction of T , at step (7)—of R

remainder of this proof, we will allow the “null move” in which no modification is
made.

(1) Move all the nodes adjacent to taxa in A2 on top of all the other nodes in T , apart
from the root. The tree restricted to A2 is then a caterpillar tree. This takes 3s2

moves.
(2) Move the caterpillar tree on A2 to the other side of the root. This takes 1

2 s
2 + 1

2 s
moves.

(3) Move all the nodes adjacent to taxa in B1 on top of all nodes apart from those
adjacent to taxa in A2 and the root. The tree restricted to B1 is then a caterpillar
tree. This takes 2s2 moves.

(4) Swap the caterpillars on A2 and B1. This takes s2 moves.
(5) Move the caterpillar tree on B1 to the other side of the root. This takes 1

2 s
2 + 1

2 s
moves.

(6) Translate the tree restricted to B2 up to place it between the trees on A1 and A2.
This takes s2 moves.

(7) Convert the tree on A1∪B2 to the corresponding subtree in R in terms of topology
and relative ranking of nodes within the subtree. This takes 2 f (n/4) moves.

(8) Translate the tree on B2 down so that the tree on A1 ∪ B2 matches the corre-
sponding subtree in R in terms of topology and relative ranking of nodes. This
takes s2 moves.

(9) Merge the tree on A2 with the tree on B2 so that the tree on A1 ∪ A2 ∪ B2
coincides with that in R. This takes 2s2 moves.

(10) Merge the tree on B1 with the tree on A1 so that the tree coincides with R. This
takes 3s2 moves.

In total, we have a recursive equation f (n) = 14s2 + s + 2 f (n/4).
Assuming that the solution is a polynomial, we see that the polynomial must be

of degree 2. It remains to apply the recursive equation to find the coefficients of the
polynomial:
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f (n) = n2 − 3n − 5

8
.

It remains to note that the assumption |A1| = |A2| = |B1| = |B2| = n−1
4 does not

increase the distance between T and R. Indeed, the sets can be chosen so that at most
half of the nodes have to cross the root, that is, |A2 ∪ B1| ≤ n−1

2 . Furthermore, the
smaller the size of A2 ∪ B1 the shorter the path. Finally, the total length of the path is
maximized when |A2| = |B1| and |A1| = |B2|. ��

Although we stated and proved the theorem only for the RNNIu graph, the idea can
be adapted to the other graphs considered here. However, this adaptation goes beyond
the scope of this paper.

We also note that the proof of the theorem provides an efficient algorithm for
computing (not necessarily shortest) paths between discrete time-trees. This algorithm
can be used for efficient exploration of the space, e.g. via MCMC, where approximate
paths can be used to improve mixing by making distant proposals. The algorithm
might also be useful to determine if two trees appear to be separated by a valley (e.g.
of posterior probability) or if they are rather located on a plateau.

A non-ranked tree has a symmetry associated with every internal node. Those sym-
metries can be employed to consider only a single representative from equivalent pairs
of trees, such as by using tanglegrams (Matsen et al. 2015;Whidden andMatsen 2016),
where a tanglegram is a graph formed by identifying the leaves of two phylogenetic
trees. However, as the following proposition shows, ranked trees are free from all but
one of those symmetries, hence the tanglegram approach is not applicable in this case.

Proposition 8 Let T be a tree fromDtT,DtTu,RNNI, orRNNIu and σ a permutation
of taxa of T . Let Tσ be the tree obtained from T by permuting the taxa using σ . Then
T = Tσ if and only if σ is either the identity permutation or a transposition of a pair
of taxa that form a cherry in T .

Proof The sufficiency is obvious. For the necessity, assume that σ transpose taxa i, j
such that i, j is not a cherry in T . This implies that i and j have different parents.
Hence T �= Tσ because the ranks of the parent of i are different in T and Tσ . ��

These observations suggest that the NNI graph is geometrically and algorithmically
different from the other four graphs.

3.3 Efficient algorithm for generating RNNI graphs

We now introduce an algorithm to compute the RNNI graph on n leaves by extending
an algorithm from Whidden and Matsen (2016). The input to our algorithm is a set
S of RNNI trees in the format described by Gavryushkin and Drummond (2016) and
implemented inGavryushkin andDrummond (2015) (see also Semple and Steel 2003).
The two key requirements of the algorithm are the ability to enumerate the neighbors
of a given tree in the RNNI graph, and the ability to determine whether a given tree
is already a vertex of the graph. Both of these requirements follow from an efficient
unique representation for ranked trees.
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A node of a tree is given by the set of taxa that are all descendants of the node. A
tree is then given by a sequence of nodes ordered by their ranks. Clearly, this obtained
representation is unique. For example, the representation of the tree on Fig. 1 is
({A}, {C}, {D}, {B}, {E}, {A, B}, {D, E}, {C, D, E}, {F}, {A, B, F}, {A, B,C, D,

E, F}), or ({A, B}, {D, E}, {C, D, E}, {A, B, F}, {A, B,C, D, E, F}) if we make
the tree ultrametric by placing all taxa below the most recent divergence event. Using
this representation of trees we construct a map ν : S → ω, where ω is the set of non-
negative integers. This map allows us to determine whether or not a tree is already a
vertex of the graph. This takes linear time if the map is implemented as a trie. We can
also enumerate the neighbors of a tree in O(n2)-time using Lemma 4. The algorithm
therefore takes O(|S| ∗ n2)-time. The high-level steps of the algorithm are as follows.
See Whidden and Matsen (2016) for an analogous proof of correctness.

Construct-RNNI-Graph(S)

1. Let G be an empty graph.
2. Let ν be an empty mapping from trees to integers.
3. Let i = 0.
4. For each of the m trees:

(a) Add a vertex i to G representing the current tree Ti .
(b) Add Ti → i to ν.
(c) For each neighbor Tj of Ti :

(j) If Tj is in dom(ν) then add an edge (i, ν(Tj )) to G.
(d) i = i + 1.

4 Open problems and conjectures

In the previous section we posed Problem 1, which asks about the complexity of com-
puting the distance in discrete time-tree graphs. This problem is the primary obstacle
for actual biological applications of the introduced graphs. The history of research
into computational complexity of phylogenetic graphs is very rich and exciting, in
particular for the case of the NNI graph, with a number of erroneous results being
published over the 25 years it took to settle the complexity. See Dasgupta et al. (2000)
for a detailed discussion of those publications, some of which claimed that NNI dis-
tance is NP-hard while others claiming that NNI distance is decidable in polynomial
time. The latter claims were mainly based on the so-called Split Theorem which states
the following: If a partition of leaves given by an edge is shared between two trees
then there exists a shortest NNI path between the trees such that every tree on the
path maintains the partition. These claims were finally refuted by Li et al. (1996),
who proved that the Split Theorem does not hold in the NNI graph. Hence, a natural
question that would contribute to understanding Problem 1 is whether or not the Split
Theorem holds in the RNNI graph and other time-tree graphs.

4.1 Split Theorem

Li et al. (1996) used properties of the diameter of the NNI graph and the sizes of
its neighborhoods to provide an example of trees such that every shortest NNI path
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between the trees fails to maintain a partition of taxa shared by the origin and destina-
tion trees. Specifically, they showed that sorting two caterpillar trees simultaneously
is more efficient than sorting them independently, provided the size of the trees is
large enough. In the following, we conjecture that the ranked versions of NNI graph
maintain splits along shortest paths. Our conjecture is based on the fact that RNNI
does not satisfy the diameter bounds necessary for the argument in Li et al. (1996)
to go through—see Theorems 5 and 7. Indeed, since sorting a caterpillar tree of size
k in RNNI takes fewer moves than merging two such caterpillar trees and then sepa-
rating them, the counter-example from Li et al. (1996) does not apply in RNNI. This
counter-example using two trees encodes the basic way in which NNI shortest paths
are non-trivial: that one can economize by first grouping leaves into bundles, moving
the bundles, and then breaking the bundles apart. Because this basic operation does
not provide an advantage in the simplest case of two caterpillar trees in RNNI, we do
not believe that it will hold for more complex collections of moves.

Conjecture 9 The following is true in all graphs DtT, DtTu, RNNI, and RNNIu, but
not in NNI. If a partition of leaves given by an edge is presented in two trees T and R
then the partition is presented in every tree on every shortest path between T and R.

4.2 Computing the distance

In this section, we bound the number of neighbors of a tree x in the discrete time-tree
graphs that are closer than x to a given tree y, under the assumption that Conjecture 9
holds. We denote trees by lowercase letters to stress the fact that we are considering
graphs as metric spaces in this section. We show that the maximum fraction of neigh-
bors that tend closer to y grows linearly with respect to d(x, y). When the graph is
seen as a metric space, this property is important for the study of the curvature of the
space as well as convergence properties of random walks over the space. This will be
useful in future studies analogous to Whidden and Matsen (2016). Furthermore, the
result provides a further insight into possible approaches to Problem 1.

Theorem 10 Assume thatConjecture9holds. Let x and y be two trees and N (x)aone-
neighborhood of x. Then the number of trees u ∈ N (x) such that d(u, y) ≤ d(x, y)
is at most

(i) 3d(x, y) in RNNI,
(ii) 4d(x, y) in DtT2,
(iii) 5d(x, y) in DtTm for m > 2.

Proof We first prove the statement for DtT2. Let U be the set of neighbors u of x
such that d(u, y) ≤ d(x, y), as stated in the theorem. We partitionU into three sets of
trees—I , R, and L—obtained from x by a single NNI move, rank change, or length
change, respectively.We then prove the theorem by bounding the size of each partition
by 2d(x, y), d(x, y), and d(x, y), respectively.

We first consider some basic properties of minimal length paths between x and
y. Observe that at most d(x, y) bipartitions differ between x and y, as each NNI
operation replaces one bipartition with another (and rank and length changes do not
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modify bipartitions). Now, Conjecture 9 implies that no minimal length path from x
to y will replace a bipartition that is common to x and y.

We are now ready to bound the sizes of each partition I , R, and L . First, consider
the subset I of closer neighbors obtained via NNI moves. By our observations above,
|I | is bounded by the number of NNI operations that modify one of the at most d(x, y)
bipartitions of x that are not a bipartition of y. There are two neighbors of x that lack
any given bipartition (obtained by moving either the left or right subtree located below
the bipartition). Therefore, |I | ≤ 2d(x, y).

Second, consider the subset R of closer neighbors obtained via rank change moves.
These operate either on one of x’s unique bipartitions or a bipartition common to x
and y that differs in rank. As observed above, the number of unique bipartitions is
bounded by the maximum number of NNI moves on any minimal x to y path. Any
such path must fix the ranks of each common edge. In other words, if r1 is the number
of trees in U which are obtained from x by a rank move corresponding to a common
edge and r2 is the number of trees in U which are obtained from x by a rank move
corresponding to a unique edge of x , then r1 + r2 ≤ d(x, y), because the r1 moves
have to be done along every shortest path from x to y. Thus, the total size of R is
bounded by d(x, y).

The bound of d(x, y) on the number of length changes that can be applied to
move x closer to y follows similarly. Therefore, there are at most |I | + |R| + |L| ≤
2d(x, y)+d(x, y)+d(x, y) = 4d(x, y) trees u ∈ N (x) such that d(u, y) ≤ d(x, y).

The statement for the other two graphs follows similarly: for RNNI we need to
count only for trees from I and R, for DtT we will have to add 2d(x, y) instead of
d(x, y) for L . ��

We conclude by noting that most of the results in this paper can be generalized to
the class of sampled ancestor trees (Gavryushkina et al. 2014), where DtT trees are
enriched by an extra event called sampled ancestor—an internal node marked by a
taxon with exactly one child. However, currently only a few methods of sampling the
space of sampled ancestor trees are known (Gavryushkina et al. 2016) and the geometry
of the space is poorly understood (Gavryushkin and Drummond 2016), hence we do
not include the generalization here.

5 Discussion

In this paper, we have introduced a hierarchy of discrete time-trees that naturally
approximates the full space of phylogenetic time-trees. The first two levels of the hier-
archy are the well-known classes of rooted phylogenetic trees and ranked phylogenetic
trees. We extend this previous work by considering a novel graph structure, the RNNI
graph, on the set of ranked trees. In the same way that the NNI graph is the discrete
component of the full space of phylogenetic trees, the RNNI graph is the simplest
discrete component of the full space of time-trees. Hence, the introduced hierarchy
fits and refines naturally the classical picture of phylogenetic graphs.

Surprisingly, the geometry of RNNI and NNI graphs differ in many aspects includ-
ing the diameter, the sizes of neighborhoods, and the convexity of caterpillar trees.
This suggests that the computational complexity of computing distances in the two
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graphs is likely to be different, at least at the level of certain subgraphs such as the
restriction to caterpillar trees. Although the size of discrete ranked graphs are much
larger than their NNI graph counterparts, ranks provide an inherent structure that may
serve as a useful avenue of attack for future algorithms.

We introduce and make some initial progress on the computational complexity of
calculating the distance between two time-trees (Problem 1). This is an important step
for further progress in theoretical research as well as computational and biological
applications of time-trees. In particular, a better understanding of this problem would
have the following applications.

5.1 Efficient tree search algorithms

Some of themost popular phylogenetic time-tree inferencemethods utilize theMarkov
Chain Monte Carlo (MCMC) algorithm to sample a probability distribution over the
space of time-trees. The most efficient proposals on time-trees will take into account
both local and global geometry of the corresponding space. Our hierarchy of discrete
time-trees offers a natural discrete structure of the space used in such tree proposals.

Thus far, the most widely used modifications of trees are NNI, SPR, and their
variants. The graph distance inherited from these modifications is known to be NP-
hard to compute, and although sometimes NP-hard problems can be solved efficiently
for practically interesting data sets, this is not the case for these phylogenetic graphs of
ranked trees, where the size of tractable problems is an order ofmagnitude smaller than
those that routinely arise in practice. Hence, a computationally tractable phylogenetic
graph is a highly relevant and desirable object for the field, and we believe that the
RNNI graph should have this property.

5.2 Convergence of phylogenetic algorithms

A tractable phylogenetic distance would greatly assist methods to assess convergence
of Bayesian tree inference algorithms based on MCMC and related methods. In other
areas of statistics, distance methods are widely used to test for convergence, but the
computational complexity of phylogenetic distances makes those methods applicable
to only very moderate data sizes. Phylogenetic distances are especially suitable for
such applications because they correspond to the distance inherited from the inference
algorithm, being based on the same sorts of tree rearrangements.

Another important property for phylogenetic applications is to compute the number
of trees that are “equally good” under certain criterion. This intuition is formalized by
Sanderson et al. (2011) in the notion of a terrace. To compute the terrace, an efficient
tree metric is of crucial importance.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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