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1  | INTRODUC TION

1.1  | Why bother with probabilistic models?

Before entering on our quest for model- based analysis of reper-
toires, one might ask “why bother?”

The first answer is simple: repertoires are generated by a prob-
abilistic process of random recombination, unknown pathogen 
exposures, and stochastic clonal expansion. Thus, when analyzing 
repertoires it behooves us to reason under uncertainty. The last cen-
tury of statistical development offers a refined set of tools to make 
statements about such systems and assess our confidence in them.

Second, repertoire data show us that complex models are jus-
tified. For example, not all germline genes are used with equal 
frequency in repertoire generation. The frequency of these germ-
line genes is interesting to measure, but also informative of which 
genes were used in specific recombination events that gave rise 
to observed sequences. Furthermore, the various genes all have 
characteristic distributions of trimming lengths, shown to be 
consistent between individuals4–6; incorporating this further im-
proves annotation and clustering inference. Such observations can 
also suggest mechanistic hypotheses that can then be tested with 
experiments.

Third, the probabilistic approach offers a principled means of ac-
counting for hidden latent variables that form an essential part of the 
model, but are not themselves of direct interest to the researcher. 
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For example, we may not care about the exact rearrangement event 
that led to a given B- cell receptor, but this is still an important latent 
variable for clustering analysis: indeed, one should only cluster re-
ceptors that came from identical rearrangement events. Thus one 
can sum over the possible rearrangement events that led to this 
clonal family, leading to a natural means of evaluating a clustering 
likelihood 7 that averages out uncertainty in the rearrangement 
process.

Fourth, probabilistic models have well- developed notions of 
model hierarchy, in which inferences at each level inform and are 
informed by inferences at other levels. This is essential to lever-
age the hierarchical structure present in immune receptor data 
(Figure 1). For example, performing inference using many sequences 
at once (eg, germline inference) can greatly improve per- sequence 
inferences, performing lots of per- individual germline inferences can 
tell us about the germline biases of a population, and so on up the 
hierarchy.

1. 2  | Model- based probabilistic analysis

We begin by introducing model- based probabilistic analysis, and 
providing a very casual introduction to maximum likelihood and 
Bayesian analysis as they apply to immune repertoires.

Consider a very simple model of the distribution of heights in 
a human population: a normal (a.k.a. Gaussian) distribution. Say we 
have observed the height of all 127 million humans in Japan, rounded 
to the nearest centimeter, and we have plotted it as a histogram. As a 
first approximation, one can think of fitting a probabilistic model as 
grabbing a normal distribution and flexing it with our hands until it 
looks as much as possible like that histogram. If its estimates are too 
small, for example, we can scoot it right, and if it is too narrow we can 
bend it so it is broader.

This process can be formalized in terms of the principle of maxi-
mum likelihood, in which we find the parameter values that are most 
likely to have generated the observed data. The likelihood function 
of the model parameters can again be thought of as “the probability 
of obtaining the observed data under the given model with those 
parameters.” Although not quite a rigorous definition for all settings, 
this definition is rigorous for discrete data such as heights rounded 
to the nearest centimeter, or DNA sequences. For a normal distri-
bution model, which is parameterized by mean μ and variance σ2, 
we can directly calculate this likelihood function. This likelihood is a 
product of terms, one for each human, equal to the Gaussian prob-
ability density (2πσ2)−1/2 exp[−(x − μ)2/2σ2], where x is the height of 
that human. It turns out that the usual formulas for the mean (ie, 
the sample average) and the (biased) sample variance (the average 
squared deviation from this mean) are exactly the maximum likeli-
hood values of these parameters: those values that maximize the 
likelihood function!

One can also approximate the likelihood function using re-
peated simulation for a single set of parameters, as we illustrate 
using the following thought experiment. In the heights example, we 
can estimate the likelihood as follows: generate many samples of 

size 127 million from a normal distribution rounded to the nearest 
integer, and calculate the fraction of times we get exactly the ob-
served set of heights. Although this will be an extraordinarily small 
number, it will be larger for parameter values that fit well (the nor-
mal distribution fits the histogram of measurements closely) than 
for ones where it does not, and thus is a means of doing parameter 
fitting. [Note that these two perspectives on optimizing our model, 
that of picking model values such that simulation is as close as pos-
sible to observation, and that of maximizing a likelihood function, 
are actually identical if we define “as close as possible” in terms of 
Kullback- Liebler 8 divergence.]

The inferential setup is the same for immune repertoire analysis, 
except that the models and data are more complex (Figure 2). Rather 
than having a model that generates human heights, models for im-
mune repertoire analysis generate immune repertoires as collections 
of DNA sequences. In a similar way, fitting such models is a process 
of wiggling the parameters until the model generates repertoires 
that are as similar as possible to the observed repertoires. In certain 
cases we can efficiently compute a likelihood function such that op-
timizing this function does the wiggling more formally, using either 
an exact formula or approximate numerical routines. However, this 
is not the case for all models, and indeed much of the subject of the 

F IGURE  1  Immune repertoires are hierarchically structured, 
here illustrated by the hierarchy for B- cell receptor sequences. 
We benefit by considering the whole hierarchy that contributes 
to our observable sequences rather than one sequence at a time. 
For example, by considering all the reads at once one can infer a 
personal germline set, which then informs the per- read annotation. 
By learning lots of personal germline sets one can infer population- 
level germline trends

How to read this paper

• If you are an immunologist and want to learn more about 
probabilistic modeling, start here.

• If you love probabilistic modeling and are curious about im-
mune repertoires, you may want to start by getting back-
ground in immunology in general 1 and immune repertoires 
in particular,2,3 then reading the Models section.

• If you already know both topics and get bored easily, skip to 
your favorite parts of repertoire analysis.
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second half of this paper describes models that attempt to make a 
balance between computability and realism.

For repertoires, we can again imagine maximum likelihood 
fitting happening via simulation: we have a model from which 
we can simulate repertoire sequences, and we can approximate 
the likelihood for a collection of parameters for a given dataset 
based on the fraction of times it generates the observed data 
exactly. In principle, we can fit the model by iteratively wiggling 
parameters and re- simulating, preferring those wiggles that 
more frequently generate the same data as what was observed. 
Of course, for real datasets such fitting is sheer lunacy: a rep-
ertoire simulation will never once exactly match an observed 
repertoire sample containing a million unique sequences even 
if we were to run it for our whole lifetimes! Nevertheless, this 
is a helpful thought experiment that underlines the importance 
of likelihood functions, which can be thought of as a “short cut” 
avoiding such simulation. We will continue this thought experi-
ment below.

We can continue the height metaphor to explain Bayesian anal-
ysis. Bayesian analysis again concerns model parameters θ. In the 
heights example, θ is a pair consisting of the mean μ and the variance 
σ2. The goal of Bayesian analysis is to not just find the best parame-
ters θ, but to get an ensemble of possible values of the parameters 
along with an idea of how well each describes the data x. This is 
formalized in the notion of a posterior distribution, which is a prob-
ability distribution on the collection of parameters describing how 
likely the various parameters are to be correct given the data. Having 
a full distribution over parameters rather than just point estimates 
allows for a more detailed characterization of the uncertainty in our 
inferences. For example, we can summarize this posterior distribu-
tion in terms of credible intervals, which are the Bayesian analog of 
confidence intervals. To obtain such a posterior distribution for our 

height example, we begin by specifying a prior distribution on the 
parameters. This prior is our a priori idea of what the heights might 
be before we sample any data. We then incorporate the data to get 
a posterior distribution. Formally, this comes from the deceptively 
simple statement of Bayes’ theorem: 

 which states that the posterior distribution p(θ|x) of model param-
eters θ given data x is proportional to the likelihood p(x|θ) times the 
prior p(θ). We can think of this as re- weighting our prior assumptions 
based on how well they explain the data.

This sounds simple enough, but in fact thousands of careers 
of computational Bayesians have been dedicated to the challenge 
posed by Bayes’ theorem being expressed in terms of proportion-
ality rather than equality. Indeed, even if we can say how much 
one parameter set is better than another via Bayes’ theorem, we 
have to evaluate many different parameters to obtain a value for 
the posterior, which makes a statement about how good a given 
parameter set is compared to all possible parameters. The situa-
tion is analogous to that of climbers in a mountain range tasked 
with estimating their height relative to the average height of the 
range: it is easy to see that one location is higher than the other, 
but evaluating the average height requires traversing the entire 
range and taking careful measurements. This is an informal way 
of saying that the integral of the posterior distribution is typically 
intractable.

When the posterior integral is in fact tractable, as can be the 
case for very simple models, we can obtain the posterior distribu-
tion directly as a formula. In our height example, if we take a normal 
prior distribution for the mean with a fixed variance, we can directly 
obtain a formula for the posterior distribution (which turns out to 
also be normal). However, such directly computable models with 

p(�|x)∝p(x|�) p(�)

F IGURE  2 Human height and immune receptor formation can both be modeled using probabilistic methods. Right panel modified (with 
permission) from (4)
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so- called “conjugate priors” are few and far- between, and none of 
them involve immune receptor DNA sequences.

For more complex models we do not attempt to compute the 
posterior distribution directly, but rather we sample from it. In this 
way we obtain a “histogram” that approximates the full posterior dis-
tribution: in our heights example, we would get a collection of (μ, σ2) 
samples from the joint distribution on these parameters. It is com-
mon to summarize these samples in terms of their single- variable 
posterior estimates, which in our example would be one histogram 
for the mean of the height distribution and another for the variance.

Although sampling from posterior distributions is a challenging 
problem, decades of research has developed sophisticated methods, 
as well as probabilistic programming languages that are dedicated 
to the task.9–11 We will briefly summarize one method Markov chain 
Monte Carlo (MCMC) below, but first present a completely rigorous 
but utterly impractical means of sampling from a posterior distribu-
tion via simulation. In the above thought experiment, we were ap-
proximating the value of the likelihood for a single set of parameters, 
and here we have an even more ambitious goal: to approximate the 
posterior across parameter values. Repeat the following process to 
obtain a posterior sample on parameters given some data:

• Draw values of the parameters from the prior
• Simulate data using those parameters
• Does this simulated data match the observed data exactly?
• If so, add these parameters to our posterior sample, and if not 

discard them
• Return to the first step until the desired number of samples is 

obtained

In the height example, each such cycle involves drawing 127 mil-
lion samples from a normal distribution and checking if they are the 
same as the observed data. The result is a sample from the poste-
rior distribution on μ and σ2. In an immune repertoire example, we 
could do the same by simulating sequences, which is even less prac-
tical than the completely impractical idea of applying this to the 
height example. Luckily, there are other means of sampling posterior 
distributions.

The most common method for sampling from a posterior distri-
bution is MCMC. MCMC is a random procedure that moves around 
parameter space such that the frequency with which the procedure 
visits a given parameter is proportional to its posterior probability. 
The most popular type of such inference in phylogenetics is random- 
walk MCMC,12 in which parameter values (such as a tree topology 
and its branch lengths) are perturbed randomly; these perturbed 
values are always accepted if they are “better” and accepted with 
some probability if they are “worse.” Being able to accept “worse” 
parameter modifications is important so that the algorithm explores 
the entire space rather than getting stuck at the peak of a distri-
bution. The notions of “better” and “worse” are determined by the 
Metropolis- Hastings ratio, which depends on having a likelihood 
function that can be evaluated efficiently. This sort of sampling is 
implemented in packages such as BEAST13 and MrBayes,14 but due 

to computational complexity is typically limited to hundreds of se-
quences in a single tree.

Before exploring computational challenges, we describe mar-
ginalization and discuss priors. Marginalization is the practice of 
“integrating out” nuisance parameters, which are parameters that 
are important for the model but may not be of interest for the re-
searcher. Imagine we were interested in what D gene was used 
for a given B- cell receptor sequence, and want to take a probabi-
listic approach because such assignment is naturally uncertain. In 
a likelihood- based approach, one can only evaluate the suitability 
of a D gene assignment when we also have specified the amount 
of trimming encountered by this D gene, even if that parameter is 
not actually of interest to us. Therefore we sum over the possible 
amounts of D gene trimming. In general this is called integration be-
cause summation is a special case of integration.

Prior distributions require careful consideration. All distribu-
tions, including prior distributions, have parameters that must be 
chosen. The parameters of prior distributions are called “hyperpa-
rameters.” Where do those come from? One option is to use a hi-
erarchical Bayesian analysis in which we consider prior parameters 
as random variables themselves, also requiring prior distributions. 
The phylodynamics community have developed sophisticated meth-
ods to infer mechanisms of viral spread using such a hierarchical ap-
proach.15 However, at some point this recursion must end and one 
must either fix values arbitrarily or attempt to estimate them from 
the data. The process of estimating fixed hyperparameters is known 
as empirical Bayes.16

1.3  | An informally described hierarchy of 
inferential difficulty

Here we describe a difficulty hierarchy for maximum likelihood and 
Bayesian inference based on how difficult the model is to compute.

1. Conjugate priors available for model: In this case, the posterior 
is available as an exact formula. Hence, no sampling is required, 
and the posterior is extremely efficient to evaluate. 
Unfortunately, this is never the case for repertoires.

2. Efficiently computable likelihood function available: Here, maxi-
mum likelihood estimation is tractable, and Bayesian methods 
can be used via MCMC. Phylogenetic trees under models 
where each site evolves independently fall into this category, 
as the Felsenstein algorithm17 provides a means for efficient 
likelihood evaluation. Nevertheless, tree inference is still chal-
lenging, and provably hard (in the technical sense) given diffi-
cult data18 because of the super-exponential number of trees 
that must be tried in order to be sure of finding the best one. 
Repertoire analysis methods such as hidden Markov models 
(HMMs, described in more detail below) for rearrangement in-
ference also fall into this category. In this case there is also la-
tent state (ie, the transition points between germline 
sequences and the N/P junction between germline-encoded 
regions); this latent state can be efficiently marginalized by the 
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Forward-Backward algorithm.4,19 Bayesian estimation for such 
parameters is also possible20 though has not been applied to 
repertoires.

3. Efficiently computed likelihood function available if we condition on 
some additional latent state: Some models do not have an efficiently 
computable likelihood function in general, though a likelihood can 
be computed if we expand the parameters of interest to include 
some additional information. For example, the ideal phylogenetic 
reconstruction method for repertoire data would take the context-
sensitive nature of somatic hypermutation into account.21 We can 
efficiently compute a likelihood function using a context-sensitive 
model such as S5F 22 if we specify the order of and time between 
mutations. However, these additional parameters are not typically 
of interest and thus need to be marginalized out using Markov 
chain methods.23 For certain classes of such models, only the order 
of mutations (vs their exact timing) matters.24

4. No likelihood function available: When no likelihood function is 
available one must resort to simulation-based methods such as 
approximate Bayesian computation (ABC).25 In this method, one 
obtains approximate posterior distributions by reducing the data 
to relevant summaries and seeing which models produce data that 
match these summaries well. Our above thought experiment re-
quired an exact match of simulated and experimentally derived 
data in order for a set of parameters to be accepted. In ABC, one 
accepts parameters with a probability determined by how closely 
prespecified summary statistics of the simulated data agree with 
those of the experimental datasets. This has been applied with 
success in population genetics problems with a modest number of 
parameters. However, as the model complexity grows, even simu-
lation-based methods suffer the “curse of dimensionality” and will 
eventually become intractable.

Any sufficiently detailed model of repertoire generation will land 
here. For example, it is not possible to calculate likelihoods for complex 
models based on agent- based simulation,26 although one could sample 
them using ABC. In fact, an informal version of ABC is currently used 
in B- cell receptor sequence analysis, in which one adjusts simulation 
parameters until they generate data that looks close to experimental 
data according to a battery of summary statistics.27–29

We see that there is often a balance between realism and com-
putability; although there is no inherent reason why this must be so, 
it is often the case. For example, computation is eased by assuming 
variables in a model are independent, even if that is not exactly true. 
In the above hierarchy, this is illustrated by easy- to- compute site- 
independent phylogenetic models on one hand vs hard- to- compute 
context- dependent models on the other.

2  | MODEL S

Here we describe existing and potential probabilistic models for im-
mune receptor development. Although in principle any probabilis-
tic model can be used for inference (via the “thought experiment” 

inference procedure described above), we find it useful to distin-
guish between inferential models and models for simulation. For the 
purposes of this paper, inferential models are those that are meant 
to be fit to data to learn something about the underlying system.

We will be interested in inferential models that are tractable to 
use for infer. ence if one is “optimistic” (marked with ): at least, one 
should be able to do inference on each individual component using 
existing machinery.

Models for simulation serve a separate and essential purpose. 
Such models can be more complex and need not have an efficiently 
computable likelihood to be useful. Agent- based models, such as 
models of a germinal center26 fall into this category. Models can make 
predictions, such as the groundbreaking 1993 prediction of cyclic 
re- entry30 that was dramatically validated over a decade later.31,32 
Also, if we want to validate inferential algorithms, we need accurate 
generative models. For these reasons we are going to sketch “luna-
tic” model components (marked with ) as well, for which we only 
require the ability to simulate in forward time.

We will investigate this framework while following receptor de-
velopment from the germline gene repertoire to clonal expansion. 
For every component of the process, we will follow an identical 
pattern in this order: biological background, then previous work on 
inference, then sections on “optimist”  and “lunatic”  models. The 
biological background will of course be a miniscule fraction of what 
is known, as we can only include parts that are relevant for the mod-
eling goals here.

Before we begin this voyage, we note that traditionally biologists 
and statisticians have slightly different but not incompatible notions 
of what is meant by “model.” A biologist’s model is typically a con-
ceptual model describing the mechanistic process by which some-
thing happens. For example, transcription factor X binds cofactor Y 
which allows it to initiate transcription of gene Z. Such a model may 
not have any parameters and thus cannot “generate” data, although 
it can typically be used to devise an experiment to test the hypoth-
eses of the model.

A statistician’s model, on the other hand, need not have any 
mechanistic underpinning, although it necessarily contains parame-
ters and can be used to generate data.

These two perspectives lead to different means of iterative 
model improvement (Figure 3). Biologists scrutinize their models for 
components that can be separated out and perturbed individually 
to form a test of the model. This reductionist approach has taught 
us most of what we know about biology today. Statisticians, on the 
other hand, are generally interested in evaluating models via model 
fit. That is, if we generate data from our model, does it resemble our 
observed data, and are new, unseen data values described well by 
the model? If not, how can we add model components that will result 
in a better- fitting model? This iterative process of model improve-
ment has been called “Box’s loop.”33

Nonetheless, these viewpoints are quite compatible, and in-
deed we may need to combine them to meet the next set of chal-
lenges in adaptive immune receptor research. For the statistician, 
incorporating mechanism into statistical models means that inferred 
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parameters have direct interpretation, and such models typically 
have fewer parameters. For the biologist, formalizing a biological 
model statistically means that models with hidden parameters can 
be directly compared in a rigorous way.

With all this introduction out of the way, now we begin consider-
ing probabilistic models for adaptive immune repertoires!

2 .1  | Germline genotype

Although repertoire modeling often starts with V(D)J rearrange-
ment,34 the rearrangement process is in turn determined by the 
genotype of each individual, in particular the collection of germline 
V, D, and J genes in the loci forming the various receptors. A com-
plete survey 35,36 is out of the scope of the paper, but suffice it to 
say that although complete haplotypes at germline loci have been 
sequenced,37–40 the genetic diversity of these loci is high and many 
new alleles continue to be discovered, especially in non- Caucasian 
populations.41–44 Thus, the germline genotype forms an important 
part of the hidden state for repertoire generation45 with real medical 
consequences.41,46

This motivates inference of germline genotypes directly from 
repertoire sequence data. Early work performed such inference 
by carefully considering several sets of high- throughput sequenc-
ing data.5,47,48 Kidd et al48 used a maximum likelihood model as-
suming uniform gene use to infer alleles, and were able to phase 
these onto haplotypes for individuals who are heterozygous at 
IGHJ6. Later work used naive sequences and an assumption of no 
gene duplication to iteratively obtain haplotypes via probabilis-
tic gene assignment for three individuals.5 More recent work has 
delivered automated tools for germline set inference: TIgGER,43 
IgDiscover,49 and partis.50 TIgGER introduced a “mutation accu-
mulation” plot relating mutations at a given site to the overall level 

of mutation in sequences. This plot should have a smooth shape in 
the absence of new alleles, but a “bend” in the presence of an un-
annotated allele; partis works by explicitly searching for this bend. 
IgDiscover applies hierarchical clustering to naive- sorted data to 
obtain germline sets in species for which little or no germline in-
formation is known.

 There is a substantial need for probabilistic germline reper-
toire inference methods. For example, this would be very useful if 
we want to estimate the unmutated ancestor of B- cell clonal families 
while quantifying uncertainty.

Germline gene inference is inferred from a whole repertoire at a 
time; this fact alone poses some challenges to a probabilistic method. 
For example, if we wish to compare two germline gene sets, naively 
one would need to perform a complete re- alignment of all sequences 
to obtain a likelihood. Because such a likelihood is available, it can 
be formally classified as “efficient” (second category in the above 
hierarchy) although such repeated re- alignment is not practical for 
large datasets. Some cleverness would be helpful here, such as only 
re- annotating sequences that could be affected by changing the ger-
mline set. Another alternative would be to infer a too- large pool of 
possible candidate germline genes, perform probabilistic alignment 
using all of these germline sequences, and use the associated prob-
abilities without running complete realignment in a second step to 
cut down the pool.

Haplotype inference has been shown to be a useful tool for cut-
ting down germline sets from such a candidate pool.5,51 This works 
by assuming limited or no gene duplication of individual genes in a 
germline set, and then using joint gene usage under VDJ recombi-
nation to infer which alleles lie on which haplotype. One can then 
review the gene assignments and reject suspicious inferences, since 
having many alleles of a given gene inferred to lie on a single haplo-
type casts doubt on their authenticity. This method does have some 
caveats. It requires heterozygosity at J (or D) genes, and that the 
V gene in question is expressed at reasonable levels on both chro-
mosomes. Also, the immunoglobulin germline locus is dynamic with 
many gene duplication and conversion events, so we cannot exclude 
the possibility of many alleles of a gene being present on a haplotype.

Despite these caveats, in order to have the best germline gene in-
ference it may be useful to extend inference to the full pair of haplo-
types, called a “diplotype.” In order to do so we will need to formalize 
generative models on diplotypes, which could act as a prior for infer-
ence. Ideally, such a generative model would come from observing 
many diplotypes. As noted above, such direct haplotype sequenc-
ing is rare, but this situation may change using improved assembly 
techniques applied to long- read sequencing data. Alternatively, one 
could build up such a model by taking a large ensemble of datasets 
and iteratively estimating haplotypes and prior parameters (deter-
mining, eg, the prior distribution of the number of alleles per gene) 
using empirical Bayes. A parameterized prior could be developed 
based on racial background, in which people with genetic ancestry 
from various places would have a different distribution of germline 
genes. The biological importance of gaining broad diplotype infor-
mation has been carefully laid out in a recent review.45

F IGURE  3 Statisticians and biologists have typically approached 
adaptive immune receptor research in two parallel tracks. 
Statisticians (upper path) treat data as given and perform model 
criticism based on numerical estimates of how well models fit the 
data. Biologists (lower path) formulate their models mechanistically 
and generate data in targeted experiments to directly test their 
model. An integrated approach (dashed arrows) has biologists 
using parameter estimates to formulate mechanistic models, and 
statisticians using the results of targeted experiments to formulate 
statistical models. Ideally, the distinction between these two 
classes of models would evaporate, although mechanistic models 
are not always readily fit using statistical means
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In principle one could directly use probabilistic methods to infer 
a pool of possible germline sequences, although here the problem 
of requiring reannotation becomes much more acute because of the 
many hypotheses that must be tried. The TIgGER mutation accu-
mulation plot gives the values of a complex conditional probability, 
and at least for the near term it makes sense to continue using this 
summary. Its analysis could be improved by more flexible models of 
how mutations accumulate on sequences—current efforts implicitly 
assume that each site accumulates mutations linearly as a function 
of the total number of mutations on that sequence.

 Germline genotypes differ between individuals in a popula-
tion and between populations and species because of long- time- 
scale evolutionary processes; it is already tempting to work to better 
understand these processes of mutation and selection. In terms 
of mutation, one may wish to connect germline gene change with 
mechanistic models of gene duplication and loss.52 Analysis of large 
populations,53 especially using parent- offspring data,54 will be im-
portant to develop such models. It is also tempting to infer selection 
on germline gene sets to maintain a diverse pool of starting mate-
rial for VDJ rearrangement, as well as to make it easier to mount an 
antibody- mediated response against locally important pathogens. 
Much more data, in particular data spread across many more popu-
lations, will be required to perform such inference.

2 . 2  | Rearrangement

By “rearrangement” we mean joint gene choice, trimming, and inser-
tions in the process of V(D)J recombination 55 without any selec-
tive steps for tolerance or binding. Biologically, this is determined 
at least in part by gene location, presence of recombination signal 
sequences,56 chromatin accessibility of these sequences,55 and long- 
range loop structure.57 There are surely additional complex genetic 
determinants of the rearrangement process, and how those contrib-
ute to repertoire formation will be a continued topic of research.

This complex machinery leads to a complex probabilistic process 
that determines rearrangement.36 Prior work has found interaction 
between N nucleotide addition and recombination 58 as well as de-
pendence between D and J gene use in BCRs.59 There is also clear 
evidence of interaction between gene use and trimming length.4,60 
The rearrangement processes change with age, a phenomenon re-
cently quantified in mouse.61 In addition to the usual rearrangement 
process, oddities such as VH replacement 62–64 and inverted and 
multiple D genes do occur, although recent analyses indicate that 
these are rare in the overall repertoire.65,66

This process is greatly deserving of complex models, as all vari-
ables determining the rearrangement process are both interesting 
and decidedly non- uniform. Indeed, many probabilistic models have 
been formulated, with the hidden Markov model (HMM) framework 
being particularly popular.6,60,65,67,68 Various implementations of the 
HMM differ in the parameterization of gene choice and trimming 
distributions, with the trend being toward parameter- rich categori-
cal distributions for trimming. Such rich distributions are justified by 
the observation that although trimming distributions are different 

between genes, strong concordance between individuals shows 
that the models are not simply fitting noise.6,60,69 Recent work has 
extended this to a more general modeling framework expressible 
in terms of an arbitrary Bayesian network.69 For the insertion se-
quences, applying an HMM has shown dependence of the next base 
on the previous one.60

 Despite substantial progress, there is still work to be done 
describing the rearrangement process using probabilistic models. 
The distribution of inserted sequences invites further exploration: 
are more complex models warranted? Although current models are 
inferred per- data- set, it would be helpful to have models that can 
concern multiple related datasets and parameterize differences be-
tween them using covariates such as age.61 Such models may also be 
useful to infer differences in the rearrangement process by genetic 
back- ground.41,46,70 An obvious if formidable next step is to extend 
current probabilistic models to include complex rearrangements 
such as replacement and multiple D genes.

 It will be more challenging to relate these descriptive statisti-
cal models to mechanism. As described above, gene choice is deter-
mined by recombination signal sequence strength and accessibility. 
Sequence features must also govern the amount of trimming, and 
early work found sequence motifs that change the distribution of 
trimming amounts.71,72 This work has not been extended in our cur-
rent era of abundant high- throughput sequencing datasets. However, 
our biological knowledge has also expanded: we now know gene 
choice is determined by processes including megabase- scale loops 
and chromatin state, although the roles of various processes such as 
hairpin opening and nucleotide deletion to germline gene trimming 
are still something of a mystery. Since these processes are so com-
plex, any proposed model will have to judiciously choose a balance 
between realism and tractability. Also, such a project will require 
diverse expertise in statistical modeling and biological mechanism.

2 .3  | Initial selective filters

Positive and negative selection determines which B and T cells are 
able to circulate. Positive selection ensures that T cells are able to 
bind major histocompatibility complex (MHC) molecules of the host. 
Negative selection happens to avoid self- reactivity and maintain an 
appropriate level of interaction with MHC. In B cells the initial selec-
tive processes ensure that a functional antibody is produced with 
limited self- reactivity.

For B cells, previous work has found selection against long and/
or hydrophobic HCDR3 loops73 as well as selection on germline gene 
use74 and D gene frame.75 Others have inferred “selection factors” 
for various aspects of the TCR76 and BCR5 in the initial selective 
process. These factors are multiplicative terms that describe the 
probability of seeing a sequence with a specific characteristic in the 
post vs preselection repertoire. For example, a selection factor for a 
specific amino acid at a specific location quantifies the level to which 
this amino acid is selected for or against.

 There are still many possible ways to extend analysis of 
“bulk” characteristics of sequence- level selection. Current methods 
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analyze the role of a single feature at a time, such as CDR3 length 
or particular selection factors, and it would be interesting to look 
for selection on sets of factors. Paired heavy/light and alpha/beta 
chain data is also an interesting source for such joint selection anal-
ysis.77–79 It will also be important to take MHC type into account 
when performing such analysis and look for MHC- mediated effects, 
although the largest analysis so far found relatively few TCRs that 
were negatively associated with MHC.80

 It will be very difficult to make the leap from such a “bulk” anal-
ysis of sequence- level selection to the true prize, which is inference 
on a per- sequence level. Extracting the binding properties of a BCR 
or TCR from sequences, and hence its potential for autoreactivity, is 
a grand challenge of computational biology that will not be solved 
soon. Perhaps the best strategy will be via protein structural model-
ing, or via machine learning techniques applied to large datasets of 
pre and postselection receptor sequences. Thus such per- sequence 
analysis appears to be out of scope of the sort of probabilistic mod-
eling considered here.

2 .4  | T- cell clonal expansion

T cells are stimulated to divide when they bind to an MHC loaded 
with a peptide that they recognize. This is called clonal expansion.

As in the previous section, one can again consider two ques-
tions for clonal expansion: first, what are bulk characteristics of 
the expanded repertoire, and second, can we infer anything on 
individual TCR sequences? Regarding bulk characteristics, abun-
dance distributions of T cells have proven to be a fertile means 
of learning about the patterns of antigenic stimulus and competi-
tion.81,82 Twin studies show a strong genetic effect of T- cell clonal 
expansion in terms of overall memory cell response and response 
against a specific immunization.83 T- cell development changes 
through age, which has been used to show that our naive T- cell 
repertoire is a complex mixture of cells generated at different 
ages.61,84 Aging clearly modifies both the existing repertoire and 
our capacity to respond to novel stimulus.85

Regarding individual sequences, it is interesting but difficult to 
associate characteristics of specific TCR sequences with genetics 
and immune state. One component of this is to develop relevant 
notions of similarity between receptors, which can then be used 
to perform clustering and projection into a lower dimensional 
space.86,87 Using these and related tools, recent work has moved 
toward a variety of machine learning goals, including clustering 
sequences according to their specificity using tetramer- binding 
data,86,88 predicting new sequences that will bind a given epi-
tope,88 identifying relationships between TCR sequence and MHC 
use,80,89 and finding sequences or sequence characteristics that 
differ between groups.80,90–92 Building databases of epitope- TCR 
pairs93 and high- throughput measurement of affinity94 will cer-
tainly spur this development.

 Probabilistic modeling can be used to estimate the chance 
of obtaining a given TCR sequence, and thus has an important role 
in interpreting T- cell frequency data. Such models can be used to 

estimate the degree of antigen- stimulated clonal expansion by 
comparing the probability of generation to the TCR frequency.92 In 
addition, probabilistic modeling is appropriate for interpreting bulk 
properties of repertoires in terms of clonal relationships within the 
sequences. Here, we will certainly see continued development of 
models describing the abundance distribution of T- cell clones, and 
how these change with age and immune stimulus.

On the other hand, predicting biophysical properties of individ-
ual TCR sequences is not easily solved using a model- based prob-
abilistic framework. The binding fitness landscape of individual 
sequences is too “rough” for typical probabilistic methods—a small 
modification in the right place can take a strongly binding receptor 
and make it non- binding.

 Thinking about a generative model that is too complex for in-
ference, we seem to fall between two stools: probabilistic genera-
tion models and models of bulk properties seem tractable, whereas 
models of individual sequences seem impossible or inappropriate 
with current probabilistic tools.

2 . 5  | B- cell clonal expansion: antigenic stimulus

B- cell clonal expansion is complex and delicious for statistical mod-
eling, and thus we will divide our description of this process among 
the following five sections.

In response to immune challenge, dense accretions of lympho-
cytes form structures known as germinal centers.95 These are the 
sites of B- cell diversification, to which B cells gain entry by the 
ability to bind antigen. This diversification process includes mu-
tation and selection processes that will be covered in subsequent 
sections below. After responding to the original infection, mem-
ory B cells and plasma cells are exported from the germinal center; 
after export these cells are mostly dormant until further stimulated. 
Serum antibody levels are maintained by dynamically controlled cell 
populations.96

Methods are now emerging to predict antigen- antibody affinity 
from sequence data for specific antigens.97 One approach is to find 
shared sequence characteristics. For example, convergent sequence 
characteristics such as gene usage, CDR3 length, and mutation load 
have been identified in response to some vaccines.98 However, not 
all sequence characteristics will have straightforward correlations: 
for example, an influenza vaccination experiment with closely sam-
pled time points did not see a correlation between VJ gene usage 
and degree of expansion.99 Age is an important covariate of this sort 
of analysis, as it changes the degree of hypermutation,100 how fre-
quently certain gene combinations are generated in the unselected 
repertoire, and how gene combinations are selected in the memory 
repertoire.101

Another approach is to build out databases of BCR sequences 
responsive to specific antigens and look for similarity between 
them, in terms of both sequence similarity and time dynamics of 
re- activation.102–104 There is some, though not plentiful, data with 
which to infer these patterns, and the most information is avail-
able for HIV antigens.105,106 This sort of approach may be aided by 



156  |     OLSON aNd MaTSEN IV

improved modeling of the space of antigen- binding sequences, such 
as with maximum- entropy models,107 or some other means of pre-
dicting binding similarity using sequence information.

The effectiveness of a database- matching approach depends 
on similar BCR sequences being used to bind a given antigen, which 
leads to the subject of “public” repertoire analysis. This sort of analysis 
determines which sequences are shared between individuals due to 
common antigen exposure and relatively high- probability random se-
quence generation.108–110 To make sense of the public repertoire one 
must understand the extent to which genetics and negative selection 
determine the naive repertoire. For example, vaccination of human 
twins gives rather different results,111 whereas there is significant evi-
dence of genetic predetermination for vaccination in mouse.112 Indeed, 
it has recently been proposed that this represents a fundamental dif-
ference between the immune systems of these two species.113

One can also consider various bulk properties of the memory 
BCR repertoire, and consider the difference between the naive 
repertoire and the mature repertoire. A deep sequencing study ob-
served differences in gene usage and CDR3 length.114 In addition, 
using appropriate laboratory and computational strategies, one can 
quantify and model the respective abundance distributions.114,115

.  Like TCR sequences, probabilistic models are needed in public 
repertoire analysis of BCR sequences to disentangle the roles of sim-
ilar rearrangements and antigenic stimulus in generating similar or 
identical receptors. Analogously, models of abundance distribution 
should inform us about the dynamics of generation and selection, 
although there does not appear to be much work in this area yet. 
Representations of sequences such as maximum- entropy models 
may provide useful tools for characterizing groups of antibody se-
quences binding a given antigen.

Although methods with more of a machine learning flavor may be 
a better fit for inferences on individual sequences, it may be useful to 
combine probabilistic models of sequence generation with probabi-
listic models of sequence families binding a certain antigen.

 As for T- cell receptors, we again fall between two stools.

2 .6  | B- cell clonal expansion: somatic 
hypermutation

When B cells replicate, their BCR locus is mutated at a rate about a 
million times higher than in normal replicating cells. This process is 
orchestrated by a complex set of steps, starting with deamination 
of a cytosine to make a uracil, and then proceeding down one of 
multiple paths of error- prone repair.116 These steps lead to complex 
context dependence, determining which antibodies are reachable 
via somatic hypermutation.117

Several decades of work has focused on how these context 
“motifs” change mutability, first by finding “hotspot” motifs that are 
especially mutable21,118,119 and then later by developing more quan-
titative approaches to describe the influence of various sequence 
characteristics. This includes models estimating the mutability of all 
possible sub- sequences of some length22,120,121 or models that use 
sequence position and/or presence of individual bases at specific 

distances to predict mutability.5,122 Our group has recently general-
ized these approaches into a penalized survival analysis framework 
that can combine arbitrary sequence features, omitting those which 
do not clearly contribute to improved model fit.24 An alternative 
way to formulate somatic hypermutation is to consider substitution 
frequencies of the combined mutation and selection processes on 
germline genes,6,123–125 although this does not provide predictions 
for N- region nucleotides.

Accurate mutation rate estimation is important for interpretation 
and prediction of B- cell evolutionary patterns. This is clearly true for 
estimation of natural selection,126–128 in which the mutation rate (the 
rate of introduction of nucleotide changes) is compared to the sub-
stitution rate (the rate of such changes that persist in the population) 
in order to estimate a natural selection parameter. It is also import-
ant for understanding which antibodies are accessible from a certain 
rearrangement117; analysis of B- cell evolution over long timescales 
suggests decreasing mutability through time.129

Currently there is an unfortunate division between biologically 
based mechanistic models and statistical models, which are so far 
only descriptive. Although the pattern of mutations has been used 
to state qualitatively that certain factors are important in the SHM 
process,118,130–133 this has not resulted in rate estimates for the var-
ious repair pathways. The one exception is a mathematical model 
of AID activity in terms of scanning and catalysis,134 although other 
processes are essential to the somatic hypermutation process in 
vivo.135 A more mechanistically explicit model of DNA damage and 
local error- prone repair should generate locally correlated sets of 
mutations more effectively, a task at which current models fail.69

In addition to the point mutations described above, somatic 
hypermutation also introduces insertion- deletion mutations, or in-
dels.136 The rate of indel introduction is comparable to the rate of 
point mutation137–139 although most of these indels are filtered out 
by natural selection in the functional repertoire. Because the mech-
anisms for point and indel mutation are linked,116 it is perhaps not 
surprising that correlation can be found between their locations.139 
Although most indels are filtered out, some have important func-
tional consequences, such as in the development of broadly neutral-
izing antibodies to HIV.140

 Inference of point mutation models is just starting to use 
methods with a probabilistic foundation, and more work needs to be 
done. One outstanding challenge is that the process of somatic hy-
permutation happens on phylogenetic trees, and it is difficult to do 
model inference on phylogenetic trees with context- sensitive mod-
els. Indeed, phylogenetic model inference typically integrates out 
potential internal states as part of the model fitting process on the 
tree; this is enabled by the use of the Felsenstein algorithm which 
requires an independence- among- sites assumption (more details 
below). That assumption is of course violated for context- sensitive 
models. Our group has used an additional sampling step to margin-
alize out the possible ancestral sequences of a given sequence, and 
avoid the need to do so in a fully phylogenetic context by selecting 
only one sequence per clonal family (ie, phylogenetic tree). Such esti-
mation has been previously done for simpler classes of models.141,142
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We are not aware of any probabilistic models for indels spe-
cifically in the somatic hypermutation process. For molecular se-
quences in general, such models first appeared in 1986,143 followed 
by the foundational TKF models.144,145 Recent work has defined a 
class of indel models with attractive computational properties.146,147

 A more biologically explicit mutation model would consider 
AID deamination and repair processes in terms of mismatch repair, 
base excision repair, indel introduction, and gene conversion.116 
Although a fully specified mechanistic model would be challenging 
for efficient inference, it is certainly suitable for simulation. Our 
group is currently using our more flexible mutation modeling setup24 
to “fish out” certain types of effects that will allow us to estimate 
rates of these various pathways, and form the foundation for such 
models.

2 .7  | B- cell clonal expansion: lineage development

B cells undergo a Darwinian process of mutation and selection 
in the germinal center to improve binding to antigen. Each B cell 
entering the germinal center founds a lineage (realized as a phylo-
genetic tree), and is the unmutated ancestor of all of its mutated 
descendants. Mutation and selection happen in the dark and light 
zones of germinal centers, respectively: in the dark zone B cells re-
produce, introducing additional diversity by the somatic hypermu-
tation process described above, whereas in the light zone B cells 
compete to retrieve antigen from follicular dendritic cells. Recent 
work has emphasized the importance of T cell help from retrieving 
antigen as opposed to direct stimulation to reproduce from BCR 
crosslinking.31

Affinity maturation is a dynamic population- level process. Using 
a mouse engineered to express a reporter of apoptosis, researchers 
have found that apoptosis is the “default” outcome in the absence of 
T- cell help.148 Intensive examination of individual germinal centers 
has led to the hypothesis of “clonal bursts” in which B cells divide 
in rapid succession due to a strong T- cell stimulus.149 Despite what 
would seem to be a very strong selective environment, phylogenetic 
analysis combined with affinity measurements has not revealed a 
steady march toward increased affinity in sampled germinal cen-
ters.149,150 Existing antibodies and B cells, including those appearing 
during the germinal center reaction151 and those from prior expo-
sures,152 change the evolutionary dynamics of the germinal center 
reaction.

Germinal centers are not seeded by single naive cells. Indeed, 
random florescence labeling shows that many cells initially seed ger-
minal centers, although these germinal centers often “resolve” to the 
descendants of a single cell through competition.149 In addition, B 
cells entering the germinal center need not be naive: mathematical 
simulation153 and mutation analysis of vaccination studies in mice154 
support the hypothesis that lineages can be re- seeded from existing 
lineages.

So much previous work has been done analyzing B- cell sequence 
lineage development, that we will divide this section into further 
mini- sections.

2 .8  | Clonal family inference

Many computational methods have been developed to reconstruct 
the hidden aspects of B- cell clonal expansion and infer the dynamics 
behind it. Any bulk sample of B cells mixes sequences deriving from 
different naive cells and responding to different antigens. Thus, an 
important first step for analysis is to group sequences into “clonal 
families,” namely, collections of sequences that descended from a 
single naive cell. The most popular means of doing this is to apply 
single- linkage clustering to the sequences, allowing sequences to 
cluster if they are annotated to have the same V and J sequences, 
have the same CDR3 length, and are less than some fixed Hamming 
distance apart. Needless to say, there are issues with each of these 
assumptions. Somatic hypermutation may cause uncertainty as to 
germline gene assignment, and insertion/deletion mutations (indels) 
may change CDR3 length. However, the assumption of a fixed cutoff, 
even a per- repertoire fixed cutoff,155 seems the most problematic. 
The most obvious counter- example to this assumption is given by 
broadly neutralizing antibodies against HIV, which with around 100 
mutations have the same order of divergence from germline genes 
as these germline genes have to one another.156 From a phylogenetic 
perspective, fixed- cutoff methods make the surprising assumption 
that branch lengths in the process of somatic hypermutation cannot 
be longer than some fixed quantity. This assumption seems even less 
sensible when we consider that repertoires are small samples from 
a large population; when we drop leaves from a phylogenetic tree 
because of sampling, the resulting branches become longer.

To avoid such assumptions, our group has developed a likelihood- 
based means of inferring clonal families in our partis software pack-
age.7 We begin by recasting the problem to one of inferring groups 
of sequences that have the same naive sequence. This differs from 
the original question of inferring clonal families, because the same 
naive sequence can be generated by two different rearrangement 
events. To solve this question, ideally one would do a perfect job of 
inferring a naive sequence from each mature sequence and then sim-
ply cluster based on those inferred naive sequences. However, such 
a procedure is not possible because there are many ways to obtain a 
given sequence from different ancestors via somatic hypermutation. 
For this reason, the method calculates a likelihood that two groups 
of sequences come from the same naive ancestor, while integrating 
over possible naive sequences. By comparing this likelihood to the 
alternative hypothesis that the two groups do not share ancestry via 
a likelihood ratio, one is able to decide whether these two groups 
should be merged into one. The method applies this likelihood- based 
framework via agglomerative clustering in a manner reminiscent of 
the neighbor- joining algorithm.157,158 A naive implementation of this 
procedure would be far too slow for actual use, and thus, the method 
uses many optimizations. Some of these come without any drop in 
accuracy, whereas some strike a balance between computational 
tractability and accuracy.

Inferences of such clusters will always be an uncertain pro-
cess, which invites a Bayesian approach to obtain posterior distri-
butions on the clusters. Indeed, early unpublished versions of our 



158  |     OLSON aNd MaTSEN IV

procedure did this hierarchical agglomeration via sequential Monte 
Carlo (SMC),159 an algorithm that can be thought of as a probabi-
listically correct type of genetic algorithm. In SMC one maintains a 
population of objects being inferred, and at each stage makes some 
modification. In this case, our software maintained a population of 
different partial clusterings, and at each stage every partial cluster-
ing makes some probabilistic merge weighted by a likelihood ratio.

This procedure was too slow and cumbersome to be applied to 
large sequence datasets. However, our group experimented with 
it enough to feel confident that uncertainty was basically “one- 
dimensional,” such that the primary unknown quantity was the 
degree of clustering. Given that partis records the sequence of clus-
terings that lead to each inferred cluster along with their likelihoods, 
we left our Bayesian ambition there. A Bayesian clustering algorithm 
based on a Dirichlet process mixture model has been described160 
although this algorithm does not appear to have been applied in 
practice.

2 .9  | Phylogenetic inference on B- cell sequences

Even once the clusters are fixed, estimating the tree for each cluster 
is non- trivial. Besides the fact that estimating a phylogenetic tree is 
an inherently hard problem, B- cell sequences have features that dif-
ferentiate them from typical applications of phylogenetics, and thus 
require special algorithms. When sampling is dense, it is not unusual 
to sample ancestor- descendant pairs. (Even if we are not actually 
sampling the true ancestor of a given cell we may sequence a cell 
that is identical to it.) The relatively short branch lengths between 
sequences has motivated an extensive use of parsimony,161,162 a 
method in which one chooses the tree that minimizes the number 
of mutations required to explain observed sequence data at the tips. 
It is important to restrict the use of parsimony to cases with short 
branch lengths as it is known to be statistically inconsistent when 
branches become long163; that is, it will produce the incorrect tree 
with probability one in the limit of long sequences.

When single- cell sequencing is applied to a densely sequenced 
sample, such as one from a germinal center,149 each sequence comes 
equipped with a meaningful abundance. This information can be 
productively used to guide phylogenetic inference.164 The intuition 
behind this approach is that, first, sampled abundance reflects the 
overall abundance of that genotype in the population, and second, 
more frequent cells are more likely to leave mutant descendants. 
For this reason, we should prefer trees that connect descendants to 
more frequently observed ancestors over those that do not.

Substantial information about the ancestral sequence can be in-
ferred with knowledge of germline sequences. Indeed, if one knows 
that a given V gene was used in the process of VDJ recombination, 
we know the ancestral state for that region of the sequence. This 
contrasts most applications of phylogenetics, in which ancestral 
states are typically unknown. In order to integrate this information 
one needs a computational framework that knows about both VDJ 
rearrangement and phylogenetics. Kepler has described such an ap-
proach, which iteratively infers a tree while estimating a posterior 

on unmutated ancestor sequences.165 Each iteration takes the un-
mutated ancestral sequence with the highest posterior probability, 
builds a tree using that sequence at the root, and then re- estimates 
the posterior on the unmutated ancestor.

The highly context- sensitive mutation processes found in so-
matic hypermutation (reviewed above) violate the near- universal 
phylogenetic assumption of independent evolution between sites. 
This assumption is essential for efficient likelihood computation in 
phylogenetics via the Felsenstein algorithm.17 This can be under-
stood intuitively as follows: if the substitution history at the first site 
depends on the second, and the history at the second depends on 
the third, then continuing this string of dependencies means that 
we must consider evolution to be happening on the whole sequence 
at a time. This is computationally intractable as the state space for 
nucleotides is four to the power of the sequence length, defeating 
the traditional use of transition matrices.

Thus if one wants to stay inside the usual likelihood- based frame-
work for phylogenetics one must use approximations to maintain the 
independence assumption. An important step forward was recently 
made by incorporating context information into a codon model.166 
In codon models, one considers codons, rather than individual nu-
cleotides, to be the units of evolution and assumes independence 
between those codons. By averaging out the part of nucleotide con-
texts that extend beyond the codon boundary, this work maintains 
a model that has independence between codons. This approach has 
the additional advantage that one can estimate parameters of selec-
tion and context sensitivity directly from the model.

B- cell sequence analysis has more emphasis on phylogenetic an-
cestral sequence inference than is typical for other applications of 
phylogenetics, and for good reason. Ancestral sequence inference 
methods enable a beautiful convergence of computational analysis 
and laboratory experiments: estimated ancestral sequences can be 
expressed and built in the lab to test their properties.156,167,168 Such 
experiments, when combined with structural analysis, give real in-
sight into how substitutions lead to improved affinity. The computa-
tional tool for these analyses has typically been PHYLIP,169 although 
other programs170,171 are faster or have additional features.

2 .10  | Selection inference

We can get additional insight into the evolutionary process by esti-
mating the strength of natural selection on a collection of sequences 
using codon- based methods. Such methods make inferences by 
considering the relative rate of synonymous (between codons for 
an amino acid) to non- synonymous (between amino acid) substitu-
tion. The intuition is that if there is selection to preserve an amino 
acid, one will see an excess of synonymous changes compared to 
non- synonymous ones because non- synonymous changes will be 
selected out of the population. The opposite will hold for cases when 
amino acid change is beneficial.

Such analysis is made difficult by the context- sensitive mutation 
process: because the probability of substitution is influenced by the 
local sequence context on one hand, and natural selection on codons 
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on the other, false conclusions can be drawn if one does not correct 
for it explicitly.126 Such correction is indeed possible.127,128,172–174 
Repertoire- level selection has been measured in the CDR region 
versus the framework region127,172,173 and in the “trunk” (edges lead-
ing from the naive ancestor to the most recent common ancestor 
of sampled sequences) versus the rest of the tree,174 with results 
broadly consistent between individuals. This theme of consistency 
is even more striking on a per- codon level,128 which shows diverse 
amounts of selection at various sites in the framework region that 
are consistent among individuals.

Tree shape and structure have also been used to estimate selec-
tive pressure on ensembles of trees. Early work used graph- theoretic 
properties of trees to estimate selection strength175; correlation 
between these measures and selection strength was determined by 
simulation.29 Later authors found that such properties can be dis-
torted by difficult- to- control experimental factors.176 They proposed 
an alternative method mapping mutations onto the edges of the tree 
and using patterns of replacement and silent nucleotide substitutions 
filtered to only include substitutions on non- terminal branches.176

A more ambitious goal is to estimate selection on a single tree 
at a time.

One recent approach compares tree balance (the number of de-
scendants on one side of a node vs another) at nodes directly below 
edges with amino acid changes vs those without.177 An investigation 
of vaccine- responsive trees178 applied local branching rates179 and a 
more classical investigation of site- frequency spectra180 to look for 
evidence of selective sweeps.

2 .11  | Modeling lineage development

The dynamic evolution of antibodies in germinal centers has been 
modeled for over a quarter century, for example leading to an 
early prediction of re- entry of circulating B cells back into the ger-
minal center.30 An early computer simulation framework, “Clone,” 
although not explicitly simulating an actual molecular sequence, 
simulated patterns of mutation in various parts of the BCR and 
their consequences.181 Others have performed ABC- like (see first 
section for an introduction to ABC) analyses where they fit values 
such as mutation rate, selection, and clone affinity based on con-
cordance of summary statistics.27–29 These analyses have typically 
been independent of existing population genetics theory, although 
recent work178 makes use of site- frequency spectrum tools from 
population genetics. Another vein of work uses agent- based and 
differential equation- based modeling to iteratively improve com-
partmental models of B- cell development.182–191 For chronic infec-
tions such as HIV, antibody- pathogen coevolution certainly plays 
a role192 although the dynamics between antibody emergence and 
viral escape are difficult to pin down.193 Some researchers have 
found a “trunk- canopy” tree structure from mature sequence 
data, in which a long “trunk” branch from the root extends from 
the naive sequence, after which there is a “canopy” of diversifica-
tion.174 However, it has been pointed out that the extent to which 
this structure is seen depends on the level of clustering.194

 The previous review shows the disjointed state of the field: al-
though clonal clustering, phylogenetics, selection inference, and mod-
eling are all describing aspects of the same underlying process, they are 
divided into different problems (note that rearrangement inference, 
which is closely tied in with phylogenetic estimation, was relegated 
to its own section above, whereas isotype, which is closely tied with 
mutation processes on trees, appears in the next section!). We must 
work toward unifying these various aspects in a shared framework.

Bayesian statistics offers a coherent framework for such infor-
mation sharing and integration over uncertain latent states. Although 
estimation of these complex posteriors will not be easy, we will be 
rewarded by more accurate inferences, leading to a more complete 
understanding of how affinity maturation works. Our group is cur-
rently building on prior work165 to develop a Bayesian sampling pro-
cedure on trees that integrates out uncertainty in the unmutated 
common ancestor using a hidden Markov model.

We are also inspired by the work of Jonathan Laserson et al160,195 
who describes how sampling ancestral sequences explicitly as part 
of an MCMC can actually increase efficiency. This echoes earlier 
work in a more general setting.196 The value of such sampling will 
be even greater when using more complex context- sensitive mod-
els, for which calculating likelihoods currently requires more inten-
sive extensions to Gibbs sampling procedures (eg, that of Chib197) 
to compute the marginal likelihood. Other types of analysis, such 
as that of selection pressure,128 also require ancestral sequence in-
ference. Thus we believe that the next generation of phylogenetic 
algorithms for BCR sequences will infer a joint posterior on ancestral 
sequences and trees.

We also believe that tree- valued stochastic models will provide 
a unified foundation for learning about the diversification process 
from B- cell sequence data. Researchers working on viral populations 
have developed sophisticated tools for learning about viral spread 
by estimating ancestral population size using Bayesian “skyline” 
analysis198 and phylogenetic generalized linear models.15 Somewhat 
analogous stochastic models for B- cell development have been de-
vised, but have only been used to generate distributions of summary 
statistics rather than being used for inference.28 A more powerful 
tactic will be to develop models with parameters of interest and per-
form parameter inference directly.

Although repertoire- scale inference with a “dream” algorithm 
getting posterior distributions of all relevant parameters will not be 
possible, we can scale our computational ambition to the question at 
hand. If we are very interested in a specific clonal family, it may be 
worth expending considerable computational effort in order to get 
high quality inferences for that family. This may include probabilis-
tically sampling alternative clusterings of that clonal family. On the 
other hand, if we are looking for repertoire- level characteristics we 
will want to scale back our effort on each individual family in order to 
get an overall picture (although it is important that such algorithms 
are unbiased).

 Realistic forward- time models are essential to help guide the 
design and implementation of inferential algorithms. For example, 
there is currently a need for models of affinity maturation that 
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generate nucleotide sequences and trees interdependently with 
some level of realism. Although antibody affinity models are rela-
tively old199 and plentiful (see above), we are not aware of any that 
generate nucleotide sequences. Our group is currently developing 
such a model as part of a benchmarking exercise of ancestral recon-
struction methods.

2 .12  | B- cell clonal expansion: Isotype

Antibodies have an isotype- determining constant region that estab-
lishes the function of the antibody in the immune system. Isotype 
can change through class- switch recombination, which arises due 
to double- stranded breaks resulting from AID deamination.116,200 
High- throughput sequencing including isotype information is now 
available, and is shining light on this process. For example, there are 
significant differences between isotypes in terms of their levels of 
somatic hypermutation.201 These new data are also elucidating the 
rate with which antibodies switch isotype classes.202,203 An analysis 
of sister lineages on either side of a branch point has suggested that 
the probability of switching to the various other isotypes is deter-
mined by more than just the current isotype202: rather, there is some 
additional hidden factor that determines the switching probability. 
This could be summarized by saying that the isotype- switching pro-
cess does not satisfy the Markov property.

 If we do assume the Markov property, one can formulate an 
isotype model using existing continuous- time trait models. Inference 
under such models is well developed from both maximum likeli-
hood204 and Bayesian205 perspectives. Adding isotype as a hidden 
state in phylogenetic inference would be straightforward.

 One may also wish to model a non- Markov latent state for 
which existing inferential techniques will not apply. Another inter-
esting type of model would e one in which mutation and isotype- 
switching are linked probabilistically.

2 .13  | Estimating the complete adaptive 
immune response

Although repertoire sequencing offers a remarkable perspective into 
the complex process of immune state, it will always offer an incom-
plete picture of the immune response. First, it is well- acknowledged 
that we are taking a small sample from a very large population. As 
such, it is common to extrapolate the total number of unique im-
mune receptors from a sample.206

However, this is not the whole story: the common practice of 
sequencing from blood may not reflect what is happening with 
B and T cells in other compartments. Recent work is beginning 
to lay the foundation for understanding the whole B-  and T- cell 
response from blood samples. This has included a “B- cell atlas” of 
samples from many tissues of organ donors,207 as well as sequen-
tial fine needle aspirates from rhesus,208 and sequencing from in-
dividual germinal centers using lymph node dissection in mice.149

In another direction one would like to understand the essen-
tial role that circulating antibodies play in the immune response. 

Although B- cell sequencing gives some idea of what antibodies can 
be made, it is certainly not the same as assaying the antibodies pres-
ent in an individual. The soluble antibody repertoire is determined by 
expression and antibody lifetime. To do this, recent work has com-
bined protein mass spectrometry with antibody sequencing.209,210 
Hopefully new protein sequencing methods211 will expand our per-
spective on soluble antibodies.

One may continue along these lines and say that even the pool of 
circulating antibodies are not the most interesting factor, and rather 
one should be interested in the collection of antigens that can be 
bound by those antibodies. For this, recent work has used antigen 
microarrays212,213 to infer what peptides can be bound by circu-
lating antibodies. For T cells, yeast display has been used to iden-
tify the peptide specificity of TCRs found in cancer.214 Abstracting 
one notch further, one can use immunological assays between viral 
strains to assay an antigenic “distance” between them215,216 that 
captures cross- reactivity of antibodies.

These complexities are well known to theoreticians. The doc-
trine of “original antigenic sin” is over 60 years old217 and modern 
methods continue to support past exposures as being essential for 
future development.152,218,219 Perhaps the closest analysis of ac-
tual sequences are models of population- level immunity in which 
the fitness of a given influenza sequence is in part determined by 
its similarity to existing sequences to which the population is al-
ready presumably immune.220,221 There are also controlled experi-
ments and mathematical models working to understand the impact 
of antibody feedback,151,188,189,222,223 although this work has not 
been generalized to an inferential framework that can be used to 
understand individual repertoire datasets. “Mutational antigenic 
profiling,”224–226 which reveals how mutating an antigen can change 
antibody binding, and “deep mutational scanning,” used to under-
stand the impact of antibody sequence variation on binding,227,228 
may be helpful in these efforts.

 Given a lot of “B- cell atlas” type data, one might be able to de-
velop a migration model between the various compartments and infer 
rates based on observations of the same or related clones in different 
compartments. The challenge with such a project will be to untan-
gle re- seeding from early seeding and partial persistence. Also, using 
such data, one may be able to model cell population sizes of difficult- 
to- sample compartments from ones that are easier to sample.

 One could dream of a model that attempts to capture the anti-
genic space that is covered by existing circulating antibodies. In par-
ticular, recent efforts introduce antibody landscapes in the context 
of influenza.229

3  | CONCLUSION

We have reviewed opportunities for probabilistic modeling in B-  and 
T- cell sequence analysis. To summarize, probabilistic models have a 
lot to contribute to rearrangement and lineage inference. However, 
inferences on the functional properties of individual sequences 
(such as for initial selective filters or antigen binding) seem better 
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done with machine learning methods rather than generative models 
for which likelihood calculation is not tractable. For those aspects 
well suited to probabilistic modeling, we will be rewarded for inte-
grating various aspects into a single framework where one level can 
communicate important information, including uncertainty, to an-
other level. For example, from B- cell sequence analysis:

• There is considerable signal in patterns of shared mutation that 
can help guide clustering inference, and the correct way of doing 
so is to combine phylogenetic inference with clustering.

• It is common to include an inferred, unmutated common ancestor 
into a sequence alignment for phylogenetic inference. Accounting 
for the corresponding uncertainty is important to gain accurate 
inferences on the processes that led to the observed sequences.

• Phylogenetic trees are also uncertain, and disregarding that uncer-
tainty will skew our downstream analyses of selection and models.

This model hierarchy can extend beyond the single- sample level to 
individual- level analysis through time, or population- level analysis. The 
parameters we learn from these larger studies, such as germline gene 
existence and frequency, can feed back down to improve per- sample 
analysis. They can also be used to analyze predictors of individual- level 
immune variation.230

The computational statistician interested in immune receptor mod-
eling is blessed with a complex biological system to analyze, intractable 
computational problems heaped on top of one another, and an ever- 
expanding collection of datasets generated from various in vivo and 
in vitro perturbations. New methods are needed to perform inference 
under complex hierarchical models of immune receptor development 
for the optimistic program laid out in this paper to become a reality. 
Although the field of computational immunology dates back many 
decades, we can gain inspiration and adapt techniques from the even 
longer tradition of macroevolutionary and ecological theory. There, we 
have seen a complex interplay of generative models, summary statis-
tics, and inferential models that have enabled the field’s progress.
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