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Abstract
We develop a time-optimal O(mn2)-time algorithm to con-
struct the subtree prune-regraft (SPR) graph on a collection
of m phylogenetic trees with n leaves. This improves on
the previous bound of O(mn3). Such graphs are used to
better understand the behaviour of phylogenetic methods
and recommend parameter choices and diagnostic criteria.
The limiting factor in these analyses has been the difficulty
in constructing such graphs for large numbers of trees. We
also develop the first efficient algorithms for constructing the
nearest-neighbor interchange (NNI) and tree bisection-and-
reconnection (TBR) graphs.

These new algorithms are enabled by a change of per-
spective: rather than focusing on the trees and checking for
pairs of adjacencies, we enumerate the potential adjacen-
cies themselves in the form of structures called “agreement
forests.” Indeed, two trees are adjacent in the graph if, and
only if, they share an appropriately defined two-component
agreement forest. We prove that this holds even in the case
of unrooted trees, the first such result for unrooted SPR. To
turn this observation into an efficient algorithm, we develop
two tools: SDLNewick, the first unique string representation
for agreement forests, and a new AFContainer data structure
which efficiently stores tree adjacencies using such strings.

1 Introduction.

Phylogenetic methods find an optimal evolutionary tree
or a posterior distribution on trees by repeatedly mod-
ifying a current tree through a series of “moves.” The
most commonly applied moves are subtree prune-and-
regraft (SPR) moves [7] (Fig. 1d) and nearest neigh-
bor interchange (NNI) moves, which are a subset of the
SPR moves [9]. Some methods also apply tree bisection-
and-reconnection (TBR) moves, which are equivalent to
applying two SPR moves. Maximization methods aim
to find the “best” tree according to an optimization
criteria such as likelihood [13, 16] or parsimony [17],
while Bayesian statistical methods [14, 3] aim to effi-
ciently sample trees. In both cases the topology of the
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trees is the most difficult parameter to optimize or sam-
ple [11, 9, 20]. Applying tree-modifying moves in the
process of maximization or sampling can be thought of
as traversing the graph consisting of trees as vertices
and moves as edges.

One can gain insight into the operation of phyloge-
netic inference methods by explicitly constructing the
subgraph composed of trees that have been visited by
running an inference method (Fig. 2). In a highly cited
1991 paper, Maddison [12] developed the notion of “is-
lands” of neighboring equally-parsimonious trees, and
found such islands containing hundreds of trees when
running on real data, and indicated their importance for
parsimony tree search. In previous work, we built the
subgraph of the SPR graph consisting of the thousands
of highest posterior probability trees as inferred by the
Markov chain Monte Carlo (MCMC) algorithm, which
is the standard means of inferring a posterior distribu-
tion on phylogenetic trees. By doing so, we found signif-
icant graph structure relevant for the design of phyloge-
netic inference software. Specifically, we found multiple
peaks (Fig. 2a), indicating multimodal posteriors, and
lattice-like structures (Fig. 2b), indicating a need to col-
lapse closely-related sequences.

Although graphs connecting a set of phylogenetic
trees have been an object of study since 1991 [12], the
construction of these graphs has not been formulated
as a problem for research. For these early studies, no
special methods were needed to build graphs on tens
to hundreds of trees. However modern phylogenetic
posterior samples, with hundreds of thousands of trees,
demand efficient algorithms. Indeed, we were limited
in our previous work to graphs of several thousand
topologies by the lack of efficient algorithms. This is
no trivial task, as it is NP-hard to even determine the
minimum distance between a pair of trees in terms of
NNI [5], SPR [2, 8], or TBR [1] operations. Thus we
propose:

SPR Graph Construction Problem. Given m bi-
nary phylogenetic trees with n leaves, determine
which pairs of trees differ by exactly one SPR move.
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Figure 1: (a) A rooted X-tree T . (b) T (V ), where V = {1, 2, 4}. (c) T |V . (d) An SPR operation transforms T
into a new tree by pruning a subtree and regrafting it in another location.

(a) (b)

Figure 2: Two SPR graphs of high-probability tree posterior subsets from [20]. Node size indicates posterior
probability. Color (red-yellow-white) indicates SPR distance from the highest probability tree. (a) “Peaky”
distributions separate high probability trees into components. (b) Closely related sequences induce lattice-like
features.

Phylogenetic trees fall into two categories: rooted
trees, which have a distinguished ancestor node and
direction of evolution, and unrooted trees, which do
not. Note that SPR graphs may differ greatly de-
pending on whether they are induced by rooted or un-
rooted trees. Similarly, we can define the correspond-
ing NNI Graph Construction Problem and TBR
Graph Construction Problem using NNI or TBR
moves, which are not changed by rootings, instead of
SPR moves.

Two methods have been introduced for constructing
SPR graphs, and we are not aware of any previous
methods for constructing NNI or TBR graphs. The first
method [20] compares each pair of trees in a collection
using a fixed-parameter algorithm [18] to determine
whether their SPR distance is 1. Although the SPR
distance is NP-hard, this fixed-parameter algorithm
scales exponentially only with the distance computed
and linearly with n. This pairwise comparison method
thus takes O(n)-time for each pair of trees, for a total of
O(m2n)-time (O(m2n3)-time for unrooted trees). Still,
pairwise comparisons are only feasible for small SPR
graphs, because of the rapidly growing m2 factor.

The second method for constructing SPR

graphs [21] relies on the observation that SPR
graphs are relatively sparse. Each tree has O(n2) SPR
neighbors [15]. By storing the O(n)-size Newick [6]
strings of trees, one can enumerate the neighbors of a
given tree in O(n3)-time. Neighbor-enumeration takes
O(mn3)-time to construct an SPR graph of m trees
with n leaves.

The biggest obstacle that slowed these methods was
the requirement to explicitly consider each possible pair
of neighbors. The pairwise comparison method does
so by considering every pair of trees, at the cost of an
extra O(m) factor. The neighbor-enumeration method
directly considers every neighbor of each tree, adding an
extra O(n) factor per tree for Newick string operations.
All these methods consider trees as the objects and look
for connections between them in the SPR graph using
structures called agreement forests (AFs).

In this paper we use agreement forests as the objects
of interest, which we enumerate and store using new
algorithms and data structures. We contribute:

• A time-optimal O(mn2)-time algorithm for the
(rooted and unrooted) SPR Graph Construc-
tion Problem
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• An O(mn2)-time algorithm for the NNI Graph
Construction Problem

• A time-optimal O(mn3)-time algorithm for the
TBR Graph Construction Problem.

The SPR and TBR algorithms are optimal in
the sense that their running times correspond to the
number of possible edges in the corresponding graphs
given n and m. Note that they always use fewer
comparisons than pairwise comparison or neighbor-
enumeration. The algorithms are enabled by a variant
of the Newick string format, dubbed smallest descen-
dant label Newick (SDLNewick), that can uniquely rep-
resent agreement forests, and a new AFContainer data
structure that stores and compares tree adjacencies us-
ing SDLNewick strings of AFs. We have deferred proofs
besides that of our main result to an appendix, as well
as the TBR and NNI graph algorithms.

2 Preliminaries.

A tree is an acyclic graph. The leaves of a tree
are nodes with one neighbor and internal nodes have
multiple neighbors. An (unrooted binary phylogenetic)
X-tree is a tree T whose nodes each have one or three
neighbors, and whose leaves are bijectively labeled with
the members of a label set X. Suppressing a node v
deletes v and its incident edges; if v has exactly two
neighbors u and w (e.g. after removing an edge), then
they are reconnected by a new edge (u,w). T (V ) is
the unique subtree of T with the fewest nodes that
connects all nodes in V ⊂ X. The V -tree induced by
T is the smallest tree T |V that can be obtained from
T (V ) by suppressing unlabeled nodes with fewer than
three neighbors.

A rooted X-tree is defined similarly to an unrooted
X-tree, with the exception that one of the internal nodes
is called the root and is adjacent to a leaf labeled ρ.
Note that this differs from the standard definition of a
rooted tree, in which the root is the only degree two
internal node. This ρ node represents the position of
the original root in a forest of the trees, as described
below. Observe that the ρ node can be attached to
such a degree two internal node, so our algorithms can
be applied to standard rooted phylogenetic trees. The
parent of a non-ρ node in a rooted tree is its closest
neighbor to the root; the other two neighbors (if any)
are its children (Fig. 1).

We assume without loss of generality that the label
set X consists of distinct integer values from 1, 2, . . . n.
Moreover, for this paper we assume that n ≤ 264−1 (i.e.
able to fit in a standard 64 bit unsigned integer format).
Larger trees are not feasible to infer computationally or
logistically.

An unrooted X-forest F is a collection of (not
necessarily binary) trees T1, T2, . . . Tk with respective
label sets X1, X2, . . . Xk. The label sets are disjoint and
complete, that is, Xi and Xj are disjoint, for all 1 ≤ i 6=
j ≤ k, and X = X1∪X2∪ . . .∪Xk. We say F yields the
forest with components T1|X1, T2|X2, . . . , Tk|Xk, that
is, the smallest forest that can be obtained from F
by suppressing unlabeled nodes with fewer than three
neighbors. In the rooted case ρ ∈ X1 and the unlabeled
component roots are not suppressed in the yielded forest.
Each component Ti is then rooted at its respective
component root. Only the root of T1 is adjacent to
ρ; the remaining roots are of degree two. For an edge
set E, F −E denotes the forest obtained by deleting the
edges in E from F and F ÷ E the yielded forest after
suppressing unlabeled degree ≤ 2 nodes. For simplicity
we say F ÷ E is a forest of F .

A subtree-prune-regraft (uSPR) operation [7] on an
unrooted X-tree T cuts an edge e = (u, v). This
divides T into subtrees Tu and Tv, containing u and
v respectively. Then it introduces a new node v′ into Tv
by subdividing an edge of Tv, and adds an edge (u, v′).
Finally, v is suppressed. An rSPR operation is defined
similarly on a rooted tree but v must be the parent of u
(Fig 1d). If v′ is adjacent to ρ then it becomes the root.

A tree-bisection-and-reconnection (TBR) opera-
tion [1] is similar to a uSPR operation, with the ex-
ception that it also introduces a new node u′ into Tu
by subdividing an edge of Tu, adds the edge (u′, v′) in-
stead of (u, v), and suppresses u. A nearest-neighbor-
interchange (NNI) operation is an SPR operation where
v and the introduced node v′ share a neighbor.

SPR operations give rise to a distance measure
dSPR(·, ·) between X-trees defined as the minimum
number of SPR operations required to transform one
tree into the other. We distinguish between drSPR(·, ·)
on rooted trees and duSPR(·, ·) on unrooted trees. The
TBR distance dTBR(·, ·) on unrooted trees is defined
analogously with respect to TBR operations. Observe
that these distances are the shortest path distances in
the respective graphs.

Given trees T1 and T2, a forest F is an agreement
forest (AF) of T1 and T2 if it is a forest of both trees.
F is a maximum agreement forest (MAF) if it has
the smallest possible number of components, denoted
m(T1, T2). For two unrooted trees T1 and T2, Allen
and Steel [1] showed that dTBR(T1, T2) = m(T1, T2)−1.
Thus two unrooted trees which differ by a single TBR
operation must share a two component unrooted MAF:

Lemma 2.1. Let T1 and T2 be two distinct unrooted
trees. Then there exists an MAF F of T1 and T2 with
two components if, and only if, dTBR(T1, T2) = 1.
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Figure 3: (a) Three rooted trees that share a 2-component agreement forest (AF). Each can be obtained from
the others by an SPR operation moving the subtree induced by leaves 4 and 5. (b) The complete SPR graph on
4-leaf rooted trees.

For two rooted trees T1 and T2, Bordewich and
Semple [2] showed that drSPR(T1, T2) = m(T1, T2) − 1,
by introducing the root node augmentation ρ described
above. Thus two rooted trees which differ by a single
SPR operation must share a two component rooted
MAF (Fig. 3a):

Lemma 2.2. Let T1 and T2 be two distinct rooted trees.
Then there exists an MAF F of T1 and T2 with two
components if, and only if, drSPR(T1, T2) = 1.

No general MAF formulation has been identified as
equivalent to the unrooted SPR distance and there are
reasons to believe that a directly analogous formulation
does not exist [19]. However, we prove that two
unrooted trees differ by exactly one SPR operation if
and only if they share an appropriately defined hybrid
two-component MAF. We note that this is the first
positive result using agreement forests for unrooted SPR
operations. Given unrooted trees T1 and T2, a forest F
is a uSPR 2-agreement forest if it is a two-component
forest of both trees such that one component is a rooted
tree and the other is an unrooted tree. The node
connected to the removed edge in both trees is the
component root.

Lemma 2.3. There exists an uSPR 2-agreement forest
F of two distinct unrooted trees, T1 and T2, with two
components if, and only if, duSPR(T1, T2) = 1.

3 A time-optimal SPR graph construction
algorithm.

In this section we present our O(mn2)-time algorithm
for the SPR Graph Construction Problem, which op-

erates identically for either rooted and unrooted trees.
The cases of NNI and TBR are similar and addressed
in the appendix. The basic idea of the algorithm is to
use a new data structure, an AFContainer, to efficiently
determine the pairwise SPR adjacencies of a collection
of trees T = T1, T2, . . . , Tm. We first Insert each tree
into the AFContainer in turn and add a vertex corre-
sponding to that tree to the graph. We then apply the
SPRNeighbors function of the AFContainer in turn
for each tree to determine which edges to add to the
graph. One novel feature of our algorithm is that, al-
though we construct undirected graphs, we do so in a
directed manner by adding directed half-edges. The al-
gorithm outputs the SPR graph with vertices labeled i
for each tree Ti in T . We refer to labels as tree IDs.

As shown in Lemmas 2.2 and 2.3, two distinct trees
are adjacent in the SPR graph if and only if there ex-
ists a two-component forest that can be obtained by
removing a single edge from both trees. The AFCon-
tainer Insert function stores a string representation
of each of the two-component rooted agreement forests
corresponding to each inserted tree. The AFContainer
SPRNeighbors function then determines which of the
previously inserted trees share an agreement forest with
the given tree. We define this data structure in Sec-
tion 5.

Our smallest descendant label Newick (SDLNewick)
string representation is based on the venerable Newick
tree format but has three important differences. First,
the SDLNewick format distinguishes between rooted
and unrooted trees. Second, the SDLNewick format
can represent both trees and forests of trees. Finally,
SDLNewick representations of the same tree or forest
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are guaranteed to be the same, regardless of the left-
right ordering of subtrees. These features are necessary
to easily determine whether two trees share a two-
component agreement forest. We define this string
format in detail in Section 4.

The high-level steps of the algorithm are as follows:

Construct-SPR-Graph(T )
1. Let A← CreateAFContainer().

2. Let G be an empty graph.

3. For i in 1 to m:

(a) Add a vertex i to G representing tree Ti.
(b) A.Insert(Ti).

4. For i in 1 to m:

(a) Let N ← A.SPRNeighbors(Ti).
(b) for each neighbor ID j ∈ N :

i. Add an edge e = (j, i) to G.

Return G.

A key factor in achieving our time-optimal O(n2)
running time bound is allowing and accounting for a
small amount of sloppiness from the SPRNeighbors
function. First, we allow the function to return the
neighbors of the current tree Ti in an arbitrary order
with respect to tree IDs. Also, the function may return
a small number of duplicate IDs caused by pairs of
trees with the same agreement forest, at most O(n)
in total (as shown in the proof of Lemma 5.3 in the
appendix). However, we must also be able to add each
edge in constant time to achieve optimality. To do
so, our algorithm always adds edges pointing towards
the current tree, Ti, in the second for loop. This
ensures that all of the edges starting from a given tree
are added to the graph in sorted order with respect
to their target. We can thus add each edge to the
end of the corresponding edge list in an adjacency list
representation in constant time, even though the set of
tree neighbors are not in sorted ID order (see the proof
of Theorem 3.1 for details). Moreover, we can easily
avoid adding duplicate edges when the SPRNeighbors
function returns duplicate tree ID values. This is a key
requirement for avoiding a log factor in the running time
of the algorithm to sort the edges and achieving a full
linear speedup over previous algorithms for the graph
construction problem.

We now show that this algorithm is correct and
time-optimal.

Theorem 3.1. SPR Graph Construction can be solved
in O(mn2)-time.

Proof. We first prove the running time bound. We
apply the above Construct-SPR-Graph algorithm

to a collection of trees T = T1, T2, . . . , Tm. We
implement the graph as an adjacency list [4]. We assume
that vertices can be added to the graph and edges can
be added to the end of a vertex’s edge list in amortized
O(1)-time. This is possible if the edge lists are stored
as an array of expandable sorted arrays and each of the
graph vertices are indexed by tree IDs.

The algorithm first applies the CreateAFCon-
tainer function in constant time by Lemma 5.1. In
the first loop, the algorithm adds a vertex to the graph,
and applies the Insert function once for each of the m
trees. Adding a vertex to the graph takes constant time
per tree. By Lemma 5.2, each insertion takes O(n2)-
time for a total of O(mn2)-time.

In the second loop, the algorithm applies the
SPRNeighbors function once for each of the m trees.
By Lemma 5.3 this takes O(n2)-time for each tree i, for
a total of O(mn2)-time. The algorithm also adds an
edge (j, i) to the graph for each neighbor of each tree i.
Each tree has O(n2) SPR neighbors and by Lemma 5.3
each list of returned neighbors contains O(n) duplicate
values. As we now argue, these edges are added to the
end of tree j’s edge list, taking O(1)-time each for a
total of O(mn2)-time for all applications of the second
loop.

An edge (j, i) can only be added to the graph in the
ith iteration of the for loop, thus an edge ei = (u, vi) is
added before any edge ej = (u, vj) such that vi < vj .
The fact that vi < vj implies that no such ej is in the
graph when ei is added. Thus, edges are always added
to the end of an edge list, which takes O(1)-time to
either add the edge or determine that the edge already
exists. Therefore the algorithm takes O(mn2)-time.

Now we prove that the algorithm is correct, that
is, the returned graph G is exactly the graph of SPR
adjacencies of T . In the first loop, the algorithm applies
the Insert function once for each of the m trees. By
Lemma 5.2, this implies that the AFContainer contains
each tree in T and their adjacencies. The algorithm
adds a vertex to G for each tree, so the vertex set of G
is {1, 2, . . . ,m}.

In the second loop, the algorithm applies the
SPRNeighbors function once for each of the m trees.
By Lemma 5.3 each application returns the set of SPR
neighbors of the corresponding tree i. The algorithm
then adds an edge (j, i) to the graph for each neighbor
of tree i. We have already shown that the edges are
added in sorted order to their respective edge lists. We
will now show that G is exactly the SPR graph of T .

First, suppose that the algorithm adds an edge
(x, y) between two trees in T that are not SPR neigh-
bors. As shown above, this must have occurred in
the yth iteration of the second for loop. However, by
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Lemma 5.3, Tx must be an SPR neighbor of Ty, a con-
tradiction.

Second, suppose that the algorithm adds two or
more copies of the same edge. However, the edges are
added in sorted order, so this cannot occur.

Finally, suppose that, when the algorithm termi-
nates, G does not contain an edge (u, v) between two
trees in T that are SPR neighbors. Consider the vth
iteration of the second for loop. By Lemma 5.3 and
the fact that u and v are SPR neighbors, the list of ID
numbers returned by A.SPRNeighbors(Ti) includes
u. Then the algorithm must have added edge (u, v), a
contradiction. Therefore the returned graph G is ex-
actly the SPR Graph of T .

4 A unique string representation for agreement
forests.

In this section, we develop an efficient method of
uniquely representing agreement forests as a string of
characters. Numerous methods have been proposed to
uniquely represent phylogenetic trees (e.g. [21, 10]),
but none for agreement forests. Our data structure in
Section 5 compares agreement forests using such strings.
The essential properties of our representation for this
use are that it must be: (1) space efficient, (2) quick to
encode, (3) quick to decode, and (4) unique.

The standard Newick string format [6] for a rooted
tree T is defined recursively, starting at the root node
r of T . The Newick format string begins with the label
of r (if any), followed by an opening parenthesis “(”.
Each of the Newick strings for the subtrees rooted at
r’s children are then appended to the string, separated
by commas “,”. A closing parenthesis “)” is appended to
the string to indicate that r has no further children. A
complete Newick string is terminated with a semicolon
“;”, no semicolons are used recursively.

An unrooted tree is represented similarly to a rooted
tree, by arbitrarily rooting the tree at an internal
node. If the original tree was binary, this results in
a trifurcation at the root of the tree.

The Newick string format fulfills the first three
essential properties, that is:

Lemma 4.1. 1. A Newick string of an n-leaf binary
tree takes O(n)-space.

2. A Newick string of a binary tree can be encoded in
O(n)-time, and

3. A Newick string can be decoded to its binary tree in
O(n)-time.

The Newick string format is, however, not unique.
For any given rooted tree T , there are many different
Newick string representations, one for each reordering

of the children in the tree. For example, the simple
two leaf rooted tree with label set {1, 2} can be rep-
resented with both the Newick string “(1,2);” and the
string “(2,1);”. Moreover, unrooted trees have different
Newick string representations for each combination of
arbitrary rooting choice and child order, and can not be
distinguished from rooted trees with a multifurcation at
the root.

To ensure a unique string representation of a given
binary tree, we add stricter conditions that force a
specific Newick string representation. We call our
variant the smallest descendant label Newick string or
SDLNewick. In particular, we fix a unique ordering of
children for each node of the tree and a unique rooting
for an unrooted tree. One easy to compute unique
child ordering is achieved by sorting children by their
smallest descendant label (e.g. [21, 10]). The smallest
descendant label of each node in the tree can be easily
computed in O(n)-time by recursively determining the
smallest descendant label of each of a node’s children
and then taking the minimum of those labels. The
nodes of a bounded degree tree (such as a typical binary
tree) can then be reordered in O(n) time. The Newick
string of the reordered tree will then be unique. For
an unrooted tree, we first root the tree at the internal
node adjacent to the leaf with smallest label. We label
the root node of a rooted tree ρ to distinguish between
rooted and unrooted trees. We refer to this procedure
as SDLNewick(T ) in Section 5.

Lemma 4.2. 1. An SDLNewick string of a binary tree
takes O(n)-space,

2. An SDLNewick string of a binary tree can be
encoded in O(n)-time,

3. An SDLNewick string can be decoded to its binary
tree in O(n)-time, and

4. An SDLNewick string of a binary tree is unique.

Finally, we extend SDLNewick to uniquely repre-
sent agreement forests of binary trees, our main result
of this section. Recall that these forests are obtained by
removing an edge from a tree and suppressing the re-
sulting degree two nodes. If the same agreement forest
can be obtained from two different trees then they are
adjacent in the SPR graph.

Let T be a binary tree with label set X and let F be
a binary forest of T such that F = T0, T1, . . . , Tk. Each
component Ti has label set Xi and, as with agreement
forests, X = X0 ∪ X1 ∪ . . . ∪ Xk, and Xi ∩ Xj = ∅
for all 0 ≤ i 6= j ≤ k. We order the components of
F by their smallest label. That is, Ti < Tj if, and
only if, min(Xi) < min(Xj). If T is a rooted tree, then
the label ρ0 representing its root in F is considered to
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be a label with a value smaller than all of the other
leaf labels. If any of the other components of F are
rooted trees then their roots are labeled ρ. This ρ is
considered to be a label with value larger than all of
the other leaf labels for the component ordering, but
still the smallest label for the purpose of rooting that
individual component. We represent F by appending
the SDLNewick strings of its component trees separated
by spaces, rather than semicolons, and end the string
with a single semicolon. We call the resulting string
the SDLNewick representation of a forest. We refer to
this procedure as SDLNewick(F ) for use in Section 5.
We show that this representation fulfills all four of our
essential properties.

Lemma 4.3. 1. An SDLNewick string representation
of a binary forest takes O(n)-space,

2. An SDLNewick string representation of a binary
forest can be encoded in O(n)-time,

3. An SDLNewick string can be decoded to its binary
forest in O(n)-time, and

4. An SDLNewick string representation of a binary
forest is unique.

We close this section by stressing that our SDL-
Newick string representation applies equally to three
types of forests relevant to phylogenetic distance met-
rics. By Lemmas 2.1, 2.2, and 2.3, two trees are adjacent
in the (1) TBR, (2) rooted SPR, or (3) unrooted SPR
graphs if and only if they share a two-component for-
est such that (1) neither component is rooted, (2) both
components are rooted, or (3) only the moved compo-
nent is rooted.

5 An efficient data structure for agreement
forests.

In this section we introduce our AFContainer data
structure for storing and comparing SPR tree adjacen-
cies using agreement forests. Trees inserted into the AF-
Container are given successive unique integer ID num-
bers starting from 0. An AFContainer consists of three
substructures: the forest trie, the ID trie, and the tree
array. The forest trie is a trie indexed by SDLNewick
forest strings. Each string represents an agreement for-
est that can be obtained by removing a single edge of
some trees inserted into the AFContainer. Recall that
two trees are adjacent in the SPR graph if, and only
if, they share a two-component agreement forest. The
forest trie stores lists of the IDs of those trees. The ID
trie is a trie indexed by SDLNewick tree strings that
maps tree strings to tree IDs. The tree array is an ex-
pandable array that maps tree IDs to SDLNewick tree
strings.

The data structure supports five main operations.
The CreateAFContainer() function creates a new
empty AFContainer. This operation initializes the for-
est trie, the ID trie, and the tree array. The Insert(T )
function inserts a tree T into the AFContainer, storing
all of the agreement forests that can be obtained by re-
moving any single edge of T . The SPRNeighbors(T )
function finds the IDs of each of the neighbors of a tree
T that have been inserted into the AFContainer. The
ID(T ) function returns the integer ID of a tree T . The
SDLNewick(I) function returns the SDLNewick string
of the tree with ID I. We present pseudocode for these
functions and prove their running time and space prop-
erties.

Lemma 5.1. An empty AFContainer can be created in
constant time.

We now present pseudocode for the Insert(T )
function and prove it takes amortized O(n2)-time.

Insert(T )

1. Let I be the number of trees in A.TreeArray.

2. Let S ← SDLNewick(T ).

3. If A.IDTrie[S] exists:

(a) Return.

4. Let A.IDTrie[S]← I.

5. Let A.TreeArray[I] ← S.

6. For each edge e of T :

(a) Let F ←SDLNewick(T ÷ e).
(b) Add I to A.ForestTrie[F ], creating the list if

necessary.

7. Return.

We require three conditions of the insert function
given a tree T . After Insert(T ) returns,

1. A.IDTrie[SDLNewick(T )] is a unique integer I,

2. A.TreeArray[I] is SDLNewick(T ), and

3. For each edge e of T , A.ForestTrie[F ] is a list
that contains I exactly once, where F = SDL-
Newick(T ÷ e).

Lemma 5.2. A binary tree can be inserted into an
AFContainer in amortized O(n2) time.

We now present pseudocode for the SPRNeigh-
bors(T ) function. We prove that it takes O(n2)-time
and correctly returns all of the ID numbers of neigh-
bors of a tree T that have been inserted into the AF-
Container. To achieve this running time bound, we ac-
cept two limitations of this function. First, the neigh-
bor ID numbers are not returned in sorted order. Sec-
ond, the list of neighbors will include some duplicate
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ID values, but only at most O(n) such duplicates. This
occurs because some pairs of trees share two or more
two-component agreement forests. These limitations do
not affect our use of this function in Section 3. More-
over, note that both limitations can be removed with a
sorting pass for use in other applications, for a total of
O(n2 log n)-time.

SPRNeighbors(T )

1. Let I ← −1.

2. If A.IDTrie[SDLNewick(T )] exists:

(a) Let I ← A.IDTrie[SDLNewick(T )].

3. Let L be an empty list of integers.

4. For each edge e of T :

(a) Let F ←SDLNewick(T ÷ e).
(b) If the list A.ForestTrie[F ] is nonempty, ap-

pend its non-I elements to L.

5. Return L.

Lemma 5.3. The SPR neighbors of a binary tree T that
are stored in an AFContainer can be identified in O(n2)-
time with O(n) duplicates.

Note that the SPRNeighbors function returns
a list of tree IDs rather than the SDLNewick strings
of neighboring trees. This is necessary to achieve an
O(n2) time bound, as the O(n) size of each such string
implies that a list of strings for all Θ(n2) neighbors is
of size Θ(n3). Our algorithm in Section 3 thus uses
these tree IDs directly. With a bounded neighborhood
size, however, the neighbor strings can be output more
efficiently:

Lemma 5.4. A list of the SPR neighbors of a binary
tree T that are stored in an AFContainer can be returned
in SDLNewick format in O(n2 +Xn)-time, where X is
the number of neighbors.

It is often necessary to determine whether a tree has
been inserted into a data structure and, if so, obtain its
identifier. We present pseduocode and prove that the
ID function takes O(n)-time.

ID(T )

1. Let S ←SDLNewick(T ).

2. If A.IDTrie[S] exists:

(a) Return the ID I.

3. Else:

(a) Return −1.

Lemma 5.5. The ID of a binary tree T in SDLNewick
format can be found or determined not to be in an
AFContainer in O(n)-time.

Similarly, we may need to determine which tree
corresponds to a given ID. It takes O(n)-time to return
the SDLNewick string of a tree given its ID number.

SDLNewick(I)

1. If A.TreeArray[I] exists:

(a) Return the stored SDLNewick string S.

2. Else:

(a) Return the empty string “′′.

Lemma 5.6. The SDLNewick string corresponding to a
tree with ID I can be found in O(n)-time.

For our final proof of the basic AFContainer op-
erations, we show that the total space required by an
AFContainer holding m trees with at most n leaves is
O(mn2).

Lemma 5.7. An AFContainer holding m trees requires
O(mn2) space.

6 Conclusions.

We developed the first time-optimal algorithms for
the SPR Graph Construction Problem and TBR
Graph Construction Problem, and the first efficient
algorithm for the NNI Graph Construction Prob-
lem, given m phylogenetic trees with n leaves.

The key insight behind these algorithms was storing
and manipulating agreement forests of trees rather than
the trees themselves. Trees are adjacent in the SPR
and TBR graphs if and only if they share appropriately
defined two-component agreement forests. We showed
that this is true even for SPR operations on unrooted
trees, despite the fact that agreement forests do not cor-
respond to SPR distances between unrooted trees that
are not adjacent in the SPR graph. We then introduced
the first unique string representation for representing
agreement forests, and an AFContainer data structure
that stores and compares such strings. SDLNewick
strings are efficient to construct and process and allow
one to easily determine whether two agreement forests
are the same. Although there have been many such
representations for trees, ours is the first that uniquely
distinguishes between rooted and unrooted trees and
uniquely represents agreement forests. As such, we be-
lieve these strings will also be useful in many other ap-
plications of phylogenetics.

The AFContainer is the first efficient method of
identifying a large number of adjacencies between evo-
lutionary trees. We wish to stress that the AFContainer
data structure can also be used dynamically, for exam-
ple to update the graph given a stream of trees.

There are several avenues to explore in future work.
First, our data structure does not currently allow for the
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deletion of trees. It may be useful to identify and delete
trees that are unlikely with respect to the sequence data
as a search progresses to reduce the memory required by
the AFContainer. Second, although a major advance,
our algorithm for constructing NNI graphs is not time-
optimal as trees have only O(n) NNI-neighbors. Closing
this gap is an open problem. Third, although our
SPR and TBR graph algorithms are time-optimal in
the sense that they match the maximum size of each
graph given n and m, they do not necessarily match the
size of a given graph. Developing an output-sensitive
algorithm which runs in time proportional to the actual
size of the constructed graph is a challenge and would be
very useful for testing and developing new phylogenetic
methods. Finally, it remains to implement our data
structure and apply it to the testing and development
of current and new phylogenetic methods.
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A Omitted Proofs.

Lemma 2.3. There exists an uSPR 2-agreement forest
F of two distinct unrooted trees, T1 and T2, with two
components if, and only if, duSPR(T1, T2) = 1.

Proof. Let T1 and T2 be two distinct unrooted trees.
First suppose that there exists such a forest F =

T1 ÷ E1 = T2 ÷ E2. Then E1 contains a single edge
e1 and E2 contains a single edge e2. Consider the two
components t1 and t2 of F , such that t1 is the unrooted
component and t2 the rooted component. Then e1 and
e2 are attached to the same node of t2 in both T1 and
T2. We can thus denote the edges e1 = (u, v) and
e2 = (u, v′). Let y and z be the other neighbors of
v′ in T2. Then we can transform T1 into T2 by applying
the SPR operation that cuts e1 in T1, introduces the
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node v′ on the edge (y, z) and then connects u and v′.
Now, suppose that there exists an SPR operation

that transforms T1 into T2 by cutting an edge (u, v),
introducing a node v′ and adding the edge (u, v′). Then
the forest of T1 with rooted component Tu and unrooted
component Tv is a forest of T1 and T2 and thus a uSPR
2-agreement forest of T1 and T2.

Lemma 4.1. 1. A Newick string of an n-leaf binary
tree takes O(n)-space.

2. A Newick string of a binary tree can be encoded in
O(n)-time, and

3. A Newick string can be decoded to its binary tree in
O(n)-time.

Proof. These properties are well known but we are not
aware of any proofs that have appeared in scholarly
work so we briefly argue their correctness here. We
first consider property (1). A rooted binary tree with n
leaves has n+ 1 internal nodes, each with two children.
By the recursive Newick definition, each internal node
adds 3 characters to the format, an opening parenthesis,
comma, and closing parenthesis. Each leaf node adds
its label which, by our assumptions on reasonable n
takes at most 20 characters. Finally, the string is
terminated by 1 semicolon character. The Newick
representation of an n leaf string thereby consists of at
most 3(n+ 1) + 20n+ 1 = 23n+ 4 characters.

For property (2), we observe that it takes constant
time to apply the definition recursively to each node
of the tree, so the Newick string can be encoded in
linear time. Similarly, for property (3), a tree can be
constructed in linear time by recursively processing a
Newick string with a well known algorithm. Briefly,
this consists of creating a new node for each opening
parenthesis as a child to the previous node, labeling
leaf nodes with the integer labels, returning to the
previous parent node when reaching a comma or closing
parenthesis, and terminating this procedure when the
semicolon is reached.

Lemma 4.2. 1. An SDLNewick string of a binary tree
takes O(n)-space,

2. An SDLNewick string of a binary tree can be
encoded in O(n)-time,

3. An SDLNewick string can be decoded to its binary
tree in O(n)-time, and

4. An SDLNewick string of a binary tree is unique.

Proof. Let T be a binary tree. We first observe that
an SDLNewick string representation of T is a valid
Newick string, as it is the Newick string representation

of some reordering of T ’s edges. Thus, property (1)
follows from Lemma 4.1.1 and property (3) follows from
Lemma 4.1.3.

We next consider property (2). Let T ′ be the small-
est descendant label reordering of T . By Lemma 4.1.2,
we can encode T ′ to the SDLNewick string representa-
tion of T in O(n)-time. We now show that we can con-
struct T ′ from T in O(n)-time. If T is unrooted then we
first compute the smallest label of T . This takes O(n)-
time to traverse T , applying a constant number of op-
erations to each node. We then reroot T at the internal
node adjacent to that leaf. This also takes O(n)-time
to set the root node and then traverse the tree, setting
parent pointers from each node.

The final step in constructing T ′ is determining
the child edge reordering and reordering the children.
To do so, we apply a recursive post-order traversal
starting at the root of T that (1) determines the smallest
descendant label of a node by taking the minimum of
the smallest descendant label of each of its children, (2)
determines the new child ordering by comparing their
smallest descendant labels and (3) reorders the children.
This process applies a constant number of operations
per node of the tree. Thus, T ′ can be constructed in
O(n)-time, and property (2) holds.

Last we show that property (4) holds. In particular,
we show that the above procedure is fully deterministic,
that is, two applications will result in the same SDL-
Newick string given any starting child order of a tree
T . By our assumption on tree labels, every leaf has
a distinct label. Thus, there is a unique smallest la-
bel, and therefore a unique smallest label rooting if T
is unrooted. The above procedure identifies this unique
rooting and applies it. Moreover, a label cannot be the
descendant of two nodes with the same parent, so ev-
ery node of the tree with the same parent must have a
unique smallest descendant label. Thus, each node of
the tree has a unique smallest descendant label child or-
dering. It is easy to see using induction that the above
procedure identifies this unique ordering and applies it.
Therefore the SDLNewick string representation of T is
unique.

Lemma 4.3. 1. An SDLNewick string representation
of a binary forest takes O(n)-space,

2. An SDLNewick string representation of a binary
forest can be encoded in O(n)-time,

3. An SDLNewick string can be decoded to its binary
forest in O(n)-time, and

4. An SDLNewick string representation of a binary
forest is unique.

Proof. Let T be a binary tree and F = T0, T1, . . . , Tk
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be a binary forest of T . Let S be an SDLNewick string
representation of F .

We first prove property (1). As noted above, S is
the concatenation of SDLNewick strings of each compo-
nent of F which have been permuted, with each semi-
colon but the last replaced by space characters. In other
words, S =“SDLNewick(Tπ0

) SDLNewick(Tπ1
) . . .

SDLNewick(Tπk
);” where Π = π0, π1, . . . , πk is a per-

mutation of the component numbers. By Lemma 4.1.1,
S is of size O(|Xπ0 |) + O(|Xπ1 |) + . . . + O(|Xπk

|) =
O(|X0|) + O(|X1|) + . . . + O(|Xk|) = O(n). Thus, the
first claim holds.

We now prove property (2). Let F ′ be the smallest
descendant label reordering of the components of F .
By applying Lemma 4.2.2 to each component of F ′, we
can encode F ′ to S. This takes O(|Xπ0 |) + O(|Xπ1 |) +
. . . + O(|Xπk

|) = O(n)-time. It thus suffices to show
that we can construct F ′ from F in O(n)-time to
prove property (2). We traverse each component of
F in order to determine its smallest label, storing the
results in an array of size k + 1 = O(n). This takes
O(|X0|) + O(|X1|) + . . . + O(|Xk|) = O(n)-time. We
then apply CountingSort [4] to sort the components by
their smallest label in O(k + n) = O(n)-time.

Property (3) follows from the structure of S in
a similar fashion to property (1). We convert each
of the space characters in S to semicolons and apply
Lemma 4.2.3 to each Newick string to construct a binary
forest from S. This takes O(|X0|) + O(|X1|) + . . . +
O(|Xk|) = O(n)-time.

Finally, we prove property (4). As in the proof
of Lemma 4.2.4, we show that the above encoding
procedure is fully deterministic. By Lemma 4.2.4, the
string representation of each component of F is unique.
It thus suffices to show that the component ordering is
unique. By our assumption on tree labels, every leaf has
a distinct label with the possible exception of artificial
labels ρ0 and ρ. Moreover, only one component can
have the ρ0 label that indicates the root of T . Finally,
ρ labels have an ordering value larger than any other
label. Thus, each component of the forest has a distinct
smallest label, and therefore the smallest label ordering
is unique.

Lemma 5.1. An empty AFContainer can be created in
constant time.

Proof. The CreateAFContainer() function simply
initalizes three empty data structures, two tries and an
expandable array. This takes constant time.

Lemma 5.2. A binary tree can be inserted into an
AFContainer in amortized O(n2) time.

Proof. We first show that each step of the Insert

function other than the for loop can be implemented
to take at most O(n)-time amortized over a series of
insert operations. It takes constant time to determine
the previous size of the TreeArray, and thereby obtain
the new tree index I. By Lemma 4.2.2, it takes O(n)-
time to construct the SDLNewick representation S of
T . It takes O(k)-time to determine if an entry with
key length k exists in a trie. By Lemma 4.2.1, S is of
length O(n). Thus, it takes O(n)-time to determine if S
is already a key in the IDTrie and, if so, terminate the
function. Similarly, it takes O(n)-time to insert I into
the IDTrie with key S. I is the next empty element of
the TreeArray. Thus, it takes constant amortized time
to insert S into the TreeArray.

Now, consider the for loop. A tree with n leaves
has O(n) edges, so there are O(n) iterations of the
loop. The first step of each iteration takes O(n)-time,
constant time to remove the edge e and suppress any
resulting degree 2 nodes, and linear time to generate
the SDLNewick string F (by Lemma 4.3.2). The second
step of each iteration also takes O(n)-time, linear time
to determine if the list A.ForestTrie[F ] already exists,
linear time to create and insert it into the ForestTrie
if it does not, and constant time to add I to the list.
There are a linear number of iterations, each taking at
most linear time, so the function can be implemented
to take O(n2)-time.

Finally, we show that the Insert function is cor-
rect, that is, after the function returns, all three cor-
rectness conditions hold. We assume inductively that
the conditions hold for any prior tree inserted into the
AFContainer. Recall that the SDLNewick representa-
tion of a tree is unique by Lemma 4.2.4. First, sup-
pose that a tree equivalent to T has been inserted pre-
viously. Then all three conditions already hold prior
to applying Insert(T ). Thus A.IDTrie[S] exists and
the function correctly terminates without modifying the
AFContainer.

Now, suppose that no tree equivalent to T
has been inserted previously. Then the ID
A.IDTrie[SDLNewick(T )] cannot exist. Thus the
function will assign a new index I to A.IDTrie[S]. The
fact that the chosen value of I is equal to the num-
ber of trees in the tree array implies that the index is
one larger than any previous index and must be unique.
This fulfills the first condition. The function then sets
A.TreeArray[I] to SDLNewick(T ), fulfilling the sec-
ond condition. Finally, suppose that the third condition
does not hold when the function terminates. Then there
exists an edge e of T such that the list A.ForestTrie[F ]
does not contain I or contains two or more values of I,
where F = SDLNewick(T ÷ e). The function consid-
ers each edge e of F , so the list must contain I at least
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once. Furthermore, the function considers each edge
exactly once, and no two forests obtained from T by
removing different edges can be isomorphic. Thus, by
Lemma 4.3.4 no two such forests have the same SDL-
Newick representation. Therefore the list contains I
exactly once and the function is correct.

Lemma 5.3. The SPR neighbors of a binary tree T that
are stored in an AFContainer can be identified in O(n2)-
time with O(n) duplicates.

Proof. We first show that the algorithm is correct when
applied to a binary tree T . Consider the list L returned
by SPRNeighbors(T ). We will show that L contains
the ID numbers of every SPR neighbor of T that
has been inserted into the AFContainer and does not
contain any other values or more than an O(n) number
of duplicate values.

First, suppose that there exists a tree T ′ that is an
SPR neighbor of T such that T ′ was inserted into the
AFContainer with index I ′ but I ′ /∈ L. By Lemma 2.2
and 2.3, the fact that T and T ′ are neighbors imply
that there exists a forest F = T ÷ e = T ′ ÷ e′ where
e and e′ are edges of T and T ′, respectively. Then,
by Lemma 5.2, the list A.ForestTrie[SDLNewick(T ′÷
e′)] exists and contains I ′. Moreover, we have
that SDLNewick(T ′ ÷ e′) = SDLNewick(T ÷ e) by
Lemma 4.3.4. Then A.ForestTrie[SDLNewick(T ÷ e)]
exists and contains I ′. Thus, SPRNeighbors(T ) must
have appended I ′ to L, a contradiction.

Now, suppose that L contains an integer I ′ that
is not the ID number of an SPR neighbor of T that
has been inserted into the AFContainer. Note that
the function only appends non-I values to L from lists
in A.ForestTrie. By Lemma 5.2, I ′ must be the ID
number of a tree T ′ that has been inserted into the
AFContainer. Moreover, SDLNewick(T ÷ e) must be
equal to SDLNewick(T ′÷e′), where e and e′ are edges
of T and T ′, respectively. However, by Lemma 2.2
and 2.3, this implies that T and T ′ are SPR neighbors,
a contradiction.

Finally, suppose that L contains an integer I cor-
responding to a tree T ′ two or more times. We
will show that there are O(n) such duplicate integers.
By Lemma 5.2, no single list from A.ForestTrie con-
tains two or more of the same value. Then there
must exist two distinct forests T ÷ e and T ÷ e′ such
that both lists A.ForestTrie[SDLNewick(T ÷ e)] and
A.ForestTrie[SDLNewick(T ÷ e′)] contain I. That is,
T can be transformed into T ′ by two or more differ-
ent SPR moves. Whidden and Matsen [21] showed that
this occurs if and only if T and T ′ are also NNI neigh-
bors and that these different moves correspond exactly
to NNI moves on T . There are O(n) NNI moves on T .

Therefore there are O(n) duplicate values in L.
We now show that the SPRNeighbors(T ) function

takes O(n2)-time. It takes constant time to initialize an
empty list. T has O(n) edges, so the for loop applies
O(n) iterations. We will show that each iteration takes
linear time, for a total of O(n2)-time.

It takes linear time to copy T and then constant
time to remove e from the copy and suppress degree
two nodes in order to construct T ÷e. By Lemma 4.3.2,
it takes linear time to construct the SDLNewick string
F from T ÷ e. It takes linear time to retrieve a list
pointer from a trie with a key of length O(n). There
are O(n) trees with the same two-element agreement
forest, and no ForestTrie list contains the same tree ID
value twice by Lemma 5.2. Thus, the list contains O(n)
elements, which are added to L in O(n)-time. Therefore
the running time of the function is O(n2) as claimed.

Lemma 5.4. A list of the SPR neighbors of a binary
tree T that are stored in an AFContainer can be returned
in SDLNewick format in O(n2 +Xn)-time, where X is
the number of neighbors.

Proof. We apply the SPRNeighbors(T ) function to
obtain a list L containing the tree IDs of T ′ neighbors
from the AFContainer. We then simply apply the AF-
Container SDLNewick function to each ID number to
obtain a list L′ containing the SDLNewick representa-
tions of T ’s neighbors. By Lemma 5.3, the first step
correctly returns the list of X tree IDs in O(n2)-time.
By Lemma 5.5, the second step correctly obtains the
SDLNewick representations of those trees, using O(n)-
time per tree for a total of O(Xn)-time. Thus, the total
time required is O(n2 +Xn).

Lemma 5.5. The ID of a binary tree T in SDLNewick
format can be found or determined not to be in an
AFContainer in O(n)-time.

Proof. First, assume that T has been inserted into the
AFContainer previously By Lemma 5.2, A.IDTrie[S]
contains the ID I of T and the function returns it.
Now, assume that T has not been inserted into the
AFContainer previously. The IDTrie only matches trees
with the same SDLNewick string as trees that have been
inserted. Along with Lemma 4.2.4, this implies that
the function returns −1 indicating that T is not in the
AFContainer.

By Lemma 4.2.2, it takes O(n)-time to compute S.
By Lemma 4.2.1, S is of O(n) size, so it also takes linear
time to look up S in the IDTrie. All other operations
take constant time, so the function takes O(n)-time
overall.

Lemma 5.6. The SDLNewick string corresponding to a
tree with ID I can be found in O(n)-time.
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Proof. The correctness of the algorithm follows by sim-
ilar arguments to those in the proof of Lemma 5.5.
The running time bound follows by noting that it takes
constant time to look up an integer-keyed value in
an expandable array and O(n)-time to return the (by
Lemma 4.1.1) O(n)-size string.

Lemma 5.7. An AFContainer holding m trees requires
O(mn2) space.

Proof. We prove the bound by induction on m. Assume
that the claim is true for any number of insertion
operations m′ < m. Then, after m − 1 insertion
operations the AFContainer takes c0(m − 1)n2 space,
where c0 > 0 is a constant.

Consider the mth insertion operation, Insert(T ).
Let I be the new ID for T and S = SDLNewick(T ).
We note again that S takes O(n)-size by Lemma 4.2.1.
The Insert function increases the space used by the
AFContainer in three ways, (1) adding I to the IDTrie
with key S, (2) adding S to the TreeArray with key
I, and (3) adding the two-component agreement forests
obtained from T to the ForestTrie. Adding an integer
value to a trie with a key of length O(n) adds O(n) ≤
c1n space, for a constant c1 > 0. Adding a string
value of length O(n) to an expandable array requires
O(n) ≤ c2n space, for a constant c2 > 0. There
are O(n) edges of T and hence O(n) updates to the
ForestTrie. By Lemma 4.3.1, each new ForestTrie key
is of length O(n). Therefore these updates cumulatively
take O(n2) ≤ c3n

2 space, for a constant c3 > 0. Then
the increase in the space used by the AFContainer is
c1n+ c2n+ c3n

2.
Let c = max(c0, 3c1, 3c2, 3c3). The total space used

by the AFContainer after applying the mth insertion
operation is then c0(m − 1)n2 + c1n + c2n + c3n

2 ≤
c(m− 1)n2 + (c/3)n+ (c/3)n+ (c/3)n2 ≤ c(m− 1)n2 +
cn2 ≤ cmn2. Therefore the total space used by the
AFContainer is O(n2).

B Fast algorithms for the NNI and TBR graph
construction problems.

In this section we show how to modify our algorithm
from Section 3 to construct NNI and TBR Graphs. We
again have a collection of trees T = T1, T2, . . . , Tm.

We first consider the NNI Graph Construction
Problem, and show that it can also be solved in O(mn2)-
time. The basic idea of the algorithm remains the same,
to Insert each tree into the AFContainer in turn, add a
vertex corresponding to that tree to the graph, and then
add the edges to the graph. NNI operations are a subset
of SPR operations, so we can use the same Insert
function that we used in the Construct-SPR-Graph
algorithm. We then apply the NNINeighbors function

(see Section C) in turn to each tree to determine which
edges to add to the graph.

The high-level steps are as follows:

Construct-NNI-Graph(T )

1. Let A← CreateAFContainer().

2. Let G be an empty graph.

3. For i in 1 to m:

(a) Add a vertex i to G representing tree Ti.
(b) A.Insert(Ti).

4. For i in 1 to m:

(a) Let N ← A.NNINeighbors(Ti).
(b) for each neighbor ID n ∈ N :

i. Add an edge e = (n, i) to G.

Return G.

It is now straightforward to show that the algorithm
is correct and bounded by our claimed running time.

Theorem B.1. The NNI Graph Construction problem
can be solved in O(mn2)-time.

Proof. The only change in Construct-NNI-Graph
from Construct-SPR-Graph is the use of the
NNINeighbors function instead of the SPRNeigh-
bors function. Therefore, the correctness and running
time bound follows from similar arguments to those in
the proof of Theorem 3.1 using Lemma C.1 in place of
Lemma 5.3.

Finally, we consider the TBR Graph Construction
Problem, and show that it can be solved in O(mn3)-
time. The additional O(n) factor in the running time
stems from the fact that trees have O(n3) TBR neigh-
bors as opposed to O(n2) SPR neighbors. The two main
operations are again inserting trees into the AFCon-
tainer and identifying tree adjacencies.

TBR operations are a superset of SPR operations,
so the same Insert function that we used in the
Construct-SPR-Graph algorithm cannot be used
here as it does not include information to identify TBR
adjacencies. We instead apply a TBRInsert function
(Section C) that accounts for the fact that TBR adja-
cencies are uniquely determined by unrooted maximum
agreement forests [1] rather than the rooted maximum
agreement forests that identify SPR adjacencies. We
then apply the TBRNeighbors function (also see Sec-
tion C) in turn to each tree to determine which edges
to add to the graph.

The high-level steps are as follows:

Construct-TBR-Graph(T )

1. Let A← CreateAFContainer().
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2. Let G be an empty graph.

3. For i in 1 to m:

(a) Add a vertex i to G representing tree Ti.
(b) A.TBRinsert(Ti).

4. For i in 1 to m:

(a) Let N ← A.TBRNeighbors(Ti).
(b) for each neighbor ID n ∈ N :

i. Add an edge e = (n, i) to G.

Return G.

It is now straightforward to show that the algorithm
is correct and bounded by our claimed running time.

Theorem B.2. The TBR Graph Construction problem
can be solved in O(mn3)-time.

Proof. The two changes in Construct-TBR-Graph
from Construct-SPR-Graph are the use of the
TBRInsert function instead of the Insert function
and the use of the TBRNeighbors function instead
of the SPRNeighbors function. Therefore, the cor-
rectness and running time bound follows from similar
arguments to those in the proof of Theorem 3.1 using
Lemma C.2 in place of Lemma 5.2 and Lemma C.3 in
place of Lemma 5.3.

C An efficient data structure for comparing
NNI and TBR agreement forests.

In this section we extend our AFContainer data struc-
ture from Section 5 to infer NNI and TBR adjacencies.
The basic substructures of the AFContainer remain the
same. To infer NNI adjacencies, we rely on the fact that
there are only O(n) NNI neighbors of a given tree with n
leaves. This allows us to directly infer each NNI neigh-
bor at a cost of O(n)-time each while maintaining the
same overall quadratic running time of the SPRNeigh-
bors function.

There are O(n3) TBR neighbors of any given tree,
however, a linear factor larger than the number of SPR
neighbors. In addition, TBR operations are a superset
of SPR operations and we require additional informa-
tion to infer TBR adjacencies. We introduce a new
TBRInsert function that stores the two-component
unrooted agreement forests which correspond to TBR
adjacencies as opposed to the two-component rooted
SPR agreement forests or two-component partially un-
rooted SPR agreement forests. We then apply a new
TBRNeighbors function that uses these agreement
forests to infer the TBR adjacencies, in an analogous
manner to SPRNeighbors.

We first present pseudocode for the NNINeigh-
bors function. We assume an arbitrary smallest de-
scendant label rooting if the input tree is unrooted. In

the following, the aunt edge of an edge e is the edge that
is sibling to e′s parent edge.

NNINeighbors(T )

1. Let L be an empty list of integers.

2. For each edge e of T with an aunt edge:

(a) Let T ′ be the tree obtained by the NNI
operation moving the subtree rooted below e
to it’s aunt edge.

(b) If A.IDTrie[SDLNewick(T ′)] is nonempty,
append its value to L.

3. Return L.

We show that this function can be implemented to
take O(n2)-time.

Lemma C.1. A list of the NNI neighbors of a binary
tree T that are stored in an AFContainer can be returned
in SDLNewick format in O(n2)-time.

Proof. Let T be a binary tree with n leaves.
We first show that the NNINeighbors(T ) function

takes O(n2)-time. T has O(n) edges, and so the for loop
is applied O(n) times. We now show that each loop
iteration takes O(n)-time, for a total of O(n2)-time. It
takes O(n)-time to copy T and apply an NNI operation
to obtain T ′. By Lemma 4.2.1 and Lemma 4.2.2, it
takes O(n)-time to obtain the SDLNewick string for T ′.
It then takes O(n)-time for a trie lookup in the IDTrie
with that string as the key, and constant time to append
an integer to a list, if the lookup is successful.

Now, we show that the algorithm is correct, that
is it returns a list containing the ID values of every
NNI neighbor of T that has been inserted into the
AFContainer and no other values. Assume that this is
not true, for the purpose of obtaining a contradiction.
We first observe that the algorithm only adds values to
L from the IDTrie. By Lemma 5.2, these correspond
to trees that have been inserted into the AFContainer.
Then there are two cases, depending on whether L
contains an ID of a tree that is not an NNI neighbor
of T or L is missing an NNI neighbor of T . Consider
the first case. Then there exists a tree T ′′ with ID
I ∈ L that is not an NNI neighbor of T . Consider
the iteration of the for loop with tree T ′ that added I
to L. By Lemma 5.2, T ′′ and T ′ must have the same
SDLNewick string. Then, by Lemma 4.2.2, T ′ and T ′′

are the same tree. However, T ′ was obtained from T by
an NNI operation, contradicting the fact that T ′′ is not
an NNI neighbor of T .

Now consider the second case. Then there exists a
tree T ′′ with ID I /∈ L such that T ′′ is an NNI neighbor
of T . Whidden and Matsen [21] showed that the exact
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set of NNI neighbors of a tree can be obtained by NNI
operations on aunt edges. Then there exists an edge e of
T such that T ′′ can be obtained by the NNI operation
moving the subtree rooted below e to it’s aunt edge.
Thus, I would have been added to L in the iteration of
the for loop that considered e, a contradiction.

We next present pseudocode for the TBRInsert
function. This function is similar to the Insert function
with the exception that the agreement forest keys of
the ForestTrie are unrooted agreement forests. This is
achieved by removing the root label leaf from the second
component induced by each edge removal. Note that a
single AFContainer can not be used to infer both SPR
and TBR adjacencies, as any second insert function on
the same tree is ignored to prevent duplicate IDTrie
keys. However, it is not difficult to introduce a function
that duplicates the behaviour of both the Insert and
TBRInsert functions by applying both for loops.

TBRInsert(T )

1. Let I be the number of trees in A.TreeArray.

2. Let S ← SDLNewick(T ).

3. If A.IDTrie[S] exists:

(a) Return.

4. Let A.IDTrie[S]← I.

5. Let A.TreeArray[I] ← S.

6. For each edge e of T :

(a) Let eρ be the edge adjacent to ρ in T .
(b) Let F ←SDLNewick(T ÷ e÷ eρ \ {ρ}).
(c) Add I to A.ForestTrie[F ], creating the list if

necessary.

7. Return.

We again require three conditions of the insert
function given a tree T . After TBRInsert(T ) returns,

1. A.IDTrie[SDLNewick(T )] is a unique integer I,

2. A.TreeArray[I] is SDLNewick(T ), and

3. For each edge e of T , A.ForestTrie[F ] is a list
that contains I exactly once, where F = SDL-
Newick(T ÷ e÷ ρ).

Lemma C.2. A binary tree and its unrooted agreement
forests can be inserted into an AFContainer in O(n2)-
time.

Proof. The proof follows analogously to that of
Lemma 5.2.

We now present pseudocode for the TBRNeigh-
bors(T ) function. Again, the only difference from the
SPRNeighbors function is the use of unrooted agree-
ment forests. We prove that it takes O(n3)-time and
correctly returns all of the ID numbers of TBR neigh-
bors of a tree that have been inserted into the AFCon-
tainer with the TBRInsert function. Again, as with
the SPRNeighbors function, the ID numbers are not
sorted and there may be O(n) duplicate ID values in
the list.

TBRNeighbors(T )

1. Let L be an empty list of integers.

2. Let I ← −1.

3. If A.IDTrie[SDLNewick(T )] exists:

(a) Let I ← A.IDTrie[SDLNewick(T )].

4. For each edge e of T :

(a) Let eρ be the edge adjacent to ρ in T .
(b) Let F ←SDLNewick(T ÷ e÷ eρ \ {ρ}).
(c) If the list A.ForestTrie[F ] is nonempty, ap-

pend its non-I elements to L.

5. Return L.

Lemma C.3. The TBR neighbors of a binary tree T
that are stored in an AFContainer can be identified in
O(n3)-time.

Proof. The proof follows analogously to that of
Lemma 5.3, using Lemma C.2 in place of Lemma 5.2
and the fact that there are O(n3) TBR neighbors of an
n-leaf tree as opposed to O(n2) SPR neighbors.

Finally, we again consider the case where one wishes
to obtain the SDLNewick strings of a set of TBR
neighbors, rather than just their ID numbers. As was
the case with SPR, this adds a linear factor to the
amount of computation required. Thus, this approach
takes O(n4)-time in the worst case. However, this is
again not necessarily more computationally expensive
to compute when the fraction of the TBR neighborhood
stored in the AFContainer is small.

Lemma C.4. A list of the TBR neighbors of a binary
tree T that are stored in an AFContainer can be returned
in SDLNewick format in O(n3 +Xn)-time, where X is
the number of neighbors.

Proof. The proof follows analogously to that of
Lemma 5.4 using Lemma C.2 in place of Lemma 5.2,
Lemma C.3 in place of Lemma 5.3, and Lemma 2.1 in
place of Lemmas 2.2 and 2.3.
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