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Abstract—Phylogenetic invariants are not the only constraints on site-pattern

frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the

exponential of a matrix with nonnegative off-diagonal entries; this nonnegativity

requirement implies nontrivial constraints on the site-pattern frequency vectors.

We call these additional constraints “edge-parameter inequalities.” In this paper,

we first motivate the edge-parameter inequalities by considering a pathological

site-pattern frequency vector corresponding to a quartet tree with a negative

internal edge. This site-pattern frequency vector nevertheless satisfies all of the

constraints described up to now in the literature. We next describe two complete

sets of edge-parameter inequalities for the group-based models; these constraints

are square-free monomial inequalities in the Fourier transformed coordinates.

These inequalities, along with the phylogenetic invariants, form a complete

description of the set of site-pattern frequency vectors corresponding to bona fide

trees. Said in mathematical language, this paper explicitly presents two finite lists

of inequalities in Fourier coordinates of the form “monomial � 1,” each list

characterizing the phylogenetically relevant semialgebraic subsets of the

phylogenetic varieties.

Index Terms—Phylogenetic tree, phylogenetic invariants, Fourier transform,

semialgebraic sets.

Ç

1 INTRODUCTION

THE Bayesian and maximum-likelihood methods in phylogenetics
can be classified as “model based.” That is, at some stage in the
analysis, one assumes a mutation model and calculates the
likelihood of the observed data for a given tree and set of model
parameters. We will call the set of site-pattern frequency vectors
generated on a fixed tree by a mutation model under legal
parameter settings a “tree image.” One of the main goals of the
emerging field of phylogenetic geometry [1], [2], [3], [4], [5] is to
locate these tree images in site-pattern frequency space. Such work
is foundational to understanding when model-based phylogenetics
does and does not succeed.

The mutation models for sequences evolving on a tree are
typically given in terms of nucleotide mutation models, which are
stochastic matrices giving the probability of various mutations at
an arbitrary site. One such matrix is associated with each edge;
consequently, one multiplies matrices along paths in the tree to get
the mutation matrix along that path. Because a series of matrix
multiplications is polynomial in the entries of the matrices, one can
consider the tree image as a subset of an affine variety.

It is then natural to apply the well-developed tools of algebraic
geometry to analyze these varieties. In particular, there has been a
flourishing of interest in the corresponding ideals of these varieties;
in the present setting, these are called “phylogenetic invariants” [1],
[3], [5], [6], [7]. Although not completely understood for all models, a
considerable amount of beautiful work has been done on these
invariants; a very nice overview has been published in [8].

One can then formulate a constrained optimization problem by
optimizing the likelihood function across the set of site-pattern

frequency vectors constrained to satisfy the phylogenetic invar-
iants. This is the view taken by Hoşten et al. [9] (3), where it is
called the maximum likelihood problem. Another article [5] says
“exact computation of maximum likelihood estimates . . . can be
formulated . . . as a constrained optimization problem where the
probabilities are the decision variables and the phylogenetic
invariants are the constraints.” A similar statement has been made
in a review article concerning the use of phylogenetic invariants
for tree reconstruction [10].

These statements may be confusing for computational biolo-
gists thinking of phylogenetic trees as descriptions of mutational
processes occurring in the evolutionary past. Indeed, there are
solutions to the phylogenetic invariants sitting in the probability
simplex which do not correspond to any reasonable assignment of
branch lengths (or, more generally, edge parameters) to a tree. In
the language of algebraic geometry, the tree image is not equal to
its Zariski closure intersected with the probability simplex. This
observation is not original to this paper: the authors of [2] define a
useful notion of “biologically meaningful” solutions to the
phylogenetic invariants. Their criterion is satisfied if the Fourier
transform of the mutation matrices have nonnegative diagonal
entries. Positivity of Fourier transforms is indeed a necessary
condition for a mutation matrix to come from a model (see
Observation 2.3), but is not sufficient as we demonstrate below in
our motivating example.

Our simple observation is this: mutation matrices are the result of a

continuous time Markov process operating for some nonnegative period of

time. This fact is implicit in any description of mutation as a
process in terms of rates, for example, in the original description of
the Kimura models [11]. In the notation of Markov processes

P ðeÞ ¼ exp teQ
ðeÞ

� �
; ð1Þ

where P ðeÞ is the mutation matrix for an edge e, te � 0 is elapsed
time, and QðeÞ is the mutation rate matrix. In this setting QðeÞ must
be a “Q-matrix,” i.e., have nonnegative off diagonal entries and
zero row sums [12].

The observation (1) implies a collection of nontrivial square-
free monomial inequalities in the Fourier transformed prob-
ability space which ensure that a solution to a complete set of
phylogenetic invariants indeed corresponds to a bona fide tree.
This paper develops a complete set of such inequalities; we call
them “edge-parameter inequalities.”

First, we present a very simple motivating example on the
quartet tree to illustrate the need for edge-parameter inequalities.
This example has a negative internal branch length, or, said
another way, the mutation rate matrix along that edge contains
negative off-diagonal entries. Despite this nonsensical setup, the
associated site-pattern frequency vector satisfies the phylogenetic
invariants and sits in the probability simplex. Furthermore, the
parameters satisfy the useful “biologically meaningful” criterion in
[2], which as noted is necessary but not sufficient for a tree to have
positive edge parameters. For our example we assume the two-
state symmetric (CFN) model with uniform distribution at the root,
labeling the two states 0 and 1. In the CFN model, there is only a
single parameter per edge, called the branch length. It is the
amount of time which we allow our binary Poisson mutation
process to run, thus the probability that the endpoints of an edge
are in different states is 0:5ð1� expð�2�ÞÞ for an edge of length �.
Let � ¼ expð�2�Þ; the Fourier transform [13] of the mutation matrix
of length � is thus diagð1; �Þ.

Our motivating example is as follows: consider the tree on
taxa 1, 2, 3, and 4 with the 12j34 split. Make each pendant edge of
length � and internal edge of length ��. Thus formally, by the
above, the off-diagonal entries of the mutation rate matrix for the
internal edge will be negative. We now show that if � > 0:60938
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then the expected site-pattern frequency vector for this tree will

satisfy all of the restrictions described up to now in the literature.
With the above notation, the nontrivial entry of the Fourier

transform of the mutation matrix will be � for the pendant edges and

��1 for the internal edges. In this and the following sections, we use p

to denote points of the probability simplex and q to denote points of

the Fourier transform of the probability simplex. We will call the p

“site-pattern frequency vectors” and the image of the probability

simplex under the Fourier transform “q-space.” We will index p and

q with taxon state vectors g.
We use Hadamard conjugation to compute q for the patholo-

gical tree. The formulation for general group-based models is

given in (4), but for the CFN model the calculation of q is quite

simple. To find a given qg, first let Sg be the set of all taxa in state 1

according to g. Second, let Eg be the set of edges in the (unique)

collection of disjoint paths connecting the taxa in Sg to each other.

Then, qg is simply the product of all nontrivial entries of the

Fourier transform of the mutation matrices for edges in Eg [13]. For

example, the path collection corresponding to g ¼ 1010 is the

single path connecting taxa 1 and 3, going through the internal

edge. Thus, q1010 ¼ � � ��1 � � ¼ �. All of the other similar calcula-

tions are reported in Table 1. An application of the inverse Fourier

transform gives the p. Note that because our root distribution is

taken to be uniform, the Fourier transform of the root distribution

is nonzero only at the identity. Thus, the only nonzero qg are those

for which the ZZ2 sum of the components of g equals zero.
It is clear that in Table 1 all pg are positive for 0 � � � 1 with the

possible exception of p1100. One can ensure positivity of p1100 by

choosing 0 < � < 0:2955, corresponding to a branch length

� > 0:60938. We fix such a choice of �, which ensures that p sits in

the probability simplex. (Note that a less stringent constraint on the

branch lengths could be achieved by taking the absolute value of the

internal branch length to be smaller than the pendant branch

lengths.) Because our q comes from Hadamard conjugation, it

satisfies the two phylogenetic invariants in this setting: q1001 � q0110 ¼
q1010 � q0101 and q0000 � q1111 ¼ q1100 � q0011. Furthermore, the diagonal

entries of the Fourier transform of the mutation matrices (i.e., 1, �

and ��1) are positive for any real � < 0, and thus the mutation

parameters satisfy the two-state analog of the “biologically mean-

ingful” criterion in [2]. However, this q came from a phylogenetic
tree with a negative internal edge. Thus, the example begs the

question of what conditions should be put on site-pattern frequency

vectors or their Fourier transforms so that one can be assured that

the corresponding trees are well formed.
This paper describes the set of “edge-parameter inequalities”

and shows that they are the exact conditions needed, namely that

any solution of the phylogenetic invariants for a given tree which

satisfies these inequalities is guaranteed to come from a tree with

nonnegative edge parameters. For example, an edge-parameter

inequality for the internal edge of the quartet tree is

q0000 q1111 q1100 q0011 � q1010 q0101q1001 q0110; ð2Þ

which is equivalent to the inequality 1 � �4 or � � 0. Thus, (2)

specifically rules out the pathological example above.
We will describe two distinct versions of the edge-parameter

inequalities. The first version is derived by considering paths in the

tree and thus will be called the “path” edge-parameter inequalities.

This version is relatively simple to write down, involving two

monomials of degree at most four for the two-state models and two

monomials of degree at most six for the four-state models. We note

that as this set of inequalities is derived on trees, they are only

meaningful for q which satisfy a complete set of phylogenetic

invariants for a tree.
Next, we present the second version of the inequalities; these

inequalities derive directly from the Székely-Steel-Erd}os Fourier

conjugation equation [14]. Because they are given directly by Fourier

conjugation, we call these inequalities the “canonical” edge-

parameter inequalities. These inequalities for group G-based

models on trees of m taxa carve out a subset of q-space which we

denote YG;m. The set of q’s corresponding to a given m-taxon tree is

the set of solutions to that tree’s phylogenetic invariants intersected

with YG;m.
We then investigate some properties of YG;m. The set YG;m is the

subset of q-space which corresponds precisely to the q of split

networks with nonnegative split parameters using an extension of

the model in [15]; thus, it is contractible. It is not convex.

Furthermore, the q corresponding to phylogenetic trees sit on the

boundary of YG;m, thus the complete space of phylogenetic

“oranges” [4], [16] for group-based models lives on this boundary.
Before getting into details, we would like to note that the idea of

constraint inequalities goes back to the remarkable paper of

Cavender and Felsenstein [3]. Indeed, they anticipate such

inequalities, the (phylogenetic) Fourier transform, and problems

with phylogenetic mixtures. Our paper can be seen as a completion

of their investigation of phylogenetic inequalities for the group-

based models.

2 TECHNICAL INTRODUCTION

In this section, we fix notation and state two versions of Fourier

conjugation. The application of discrete Fourier transform ideas to

phylogenetics was pioneered in [17] and [18] for the CFN model,

then generalized to group-based models in [14] and [19]. Our

notation combines that of [5] and [15]. We note that because

Fourier conjugation is our primary tool, we will only be

considering group-based mutation models (defined below), in

particular G ¼ ZZ2 or ZZ2 � ZZ2.
As stated in Section 1, the simple observation of this paper is

that mutation transition matrices come from continuous-time

Markov processes. Thus, the mutation matrices P ðeÞ must satisfy

(1) for each edge e, with te and the off-diagonal elements of QðeÞ

being nonnegative. We allow the rate matrices QðeÞ to vary from

edge to edge; thus we can (and do) incorporate te into QðeÞ and so

assume te ¼ 1 for any e. We call the resulting entries of the

mutation rate matrices QðeÞ for an edge “edge parameters.” We

note that in phylogenetic practice one often assumes a fixed rate

matrix Q for the whole tree and the only parameters of a given

edge are the branch lengths te; here, we make no such restriction.
Fourier conjugation applies to the “group-based models.” Each

state in such a model is uniquely labeled with an element of an

Abelian group. We will write our group G additively, with 0

denoting the identity element. The essential point in the definition

of a group-based model is that the rate of transition from state g to
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Site-Pattern Frequencies and Their Fourier Transforms

for the Example Mentioned in the Text



h is only a function of the difference of g and h in G. Fixing an

edge e, we write

Q
ðeÞ
g;h ¼  ðeÞðh� gÞ;

where QðeÞ denotes the mutation rate matrix along an edge e, and

 ðeÞ is an arbitrary jGj-vector with components summing to zero

such that  ðeÞðgÞ � 0 for g 6¼ 0. The group-based models consid-

ered in the literature are also time reversible, i.e., one requires

that Q
ðeÞ
g;h ¼ Q

ðeÞ
h;g, which is equivalent to  ðeÞðgÞ ¼  ðeÞð�gÞ. Because

exponentiation preserves symmetries of the matrices, we will also

have

P
ðeÞ
g;h ¼ f ðeÞðh� gÞ

for some probability jGj-vector f ðeÞ. Time reversibility similarly

implies f ðeÞðgÞ ¼ f ðeÞð�gÞ.
The discrete Fourier transform is constructed via the

“dual group” of an Abelian group. The elements of Ĝ, the dual

group toG, are the homomorphisms ofG to the multiplicative group

of complex numbers of magnitude one. The groups G and Ĝ are

isomorphic; such an isomorphism is canonical after choosing an

identification of G with a direct product of finite cyclic groups. We

make such a choice, and because of the resulting isomorphism, we

will use the same letters g; h; . . . to denote elements of G and Ĝ.

However, we will follow [15] in using “hat” for the application of an

element of the dual group, such that ĝðhÞ is the application of g 2 Ĝ
to h 2 G. (This conflicts with traditional notation for Fourier

transform; we will use “check” for this purpose as defined below.)

We also note that because G is isomorphic to a direct product of

cyclic groups, we have ĝðhÞ ¼ ĥðgÞ.
The Fourier transform of a function a : G! CC is

�aðgÞ :¼
X
h2G

ĝðhÞaðhÞ:

By the definitions �f ðeÞð0Þ ¼ 1 for any e. Note that

�f ðeÞð�gÞ ¼
X
h2G

c�gðhÞf ðeÞðhÞ ¼ X
h2G

ĝð�hÞf ðeÞðhÞ

¼
X
h2G

ĝðhÞf ðeÞð�hÞ ¼
X
h2G

ĝðhÞf ðeÞðhÞ ¼ �f ðeÞðgÞ;
ð3Þ

where the fourth equality is by time reversibility. By the definition

of the Fourier transform, �að�gÞ ¼ �aðgÞ for any real-valued function

a. Thus, the fact that �f ðeÞðgÞ ¼ �f ðeÞð�gÞ is equivalent to the fact that
�f ðeÞðgÞ is real.

The formulas for the phylogenetic Fourier transform are
simplified by rerooting the tree at a leaf, which eliminates the
need for a special root distribution [5], [14]. Specifically, we extend
an edge from the root terminating in a new leaf; the previous root
distribution is then replaced by a transition matrix along the new
edge. Thus, without loss of generality, we assume our given tree T
on m leaves is rooted at a leaf and that the root distribution puts all
mass at the identity.

Phylogenetic Fourier conjugation is an invertible transforma-
tion between the collection of edge parameters  ðeÞðgÞ and the
corresponding site-pattern frequency vector for a given tree. This
site-pattern frequency vector is the joint distribution of states at the
leaves defined as follows: Start at the root, and move toward the
leaves, changing state along an edge e according to P ðeÞ. The
induced joint distribution on the leaves will be denoted p, where
the component pg of p is the probability of seeing g 2 Gm by the
above process.

The Fourier transform of the p vector using the group Gm will

be denoted q. The matrix representation of the Fourier transform

for the group G will be denoted K, i.e., Kg;h :¼ ĝðhÞ for any g,

h 2 G. The analogous matrix for Gm will be denoted H. Note that

H is the m-fold Kronecker product of K. In this notation, q ¼ Hp.

We note that when K (and thus, H) is a matrix with entries �1, the

Fourier transform is often called the Hadamard transform.
Following [5], use �ðeÞ to denote the set of leaves i such that the

path from i to the root goes through e; �ðeÞ can be thought of the
set of leaves “below” e. We also define

�ge ¼
X
i2�ðeÞ

gi:

The vector �g ¼ ð�geÞ is a natural lift of a g 2 Gm to an assignment
of G to the edges of the tree. We will be using two versions of
Fourier conjugation. In this notation, version one can be written as
follows:

Theorem 2.1 ([18], [19]).

qg ¼
Y
e2E

�fðeÞð�geÞ: ð4Þ

The second version of the edge-parameter inequalities will use

a different version of the Fourier conjugation. In order to express

this second version, we state the following lemma.

Lemma 2.2.

�fðhÞ ¼ exp � ðhÞ
� �

:

Proof. We begin as for Lemma 17.2 of [15] (though for right rather

than left eigenvalues)

ðQKÞg;h ¼
X
x2G

 ðx� gÞx̂ðhÞ

¼
X
y2G

 ðyÞ dyþ gðhÞ
¼ ĝðhÞ

X
y2G

 ðyÞŷðhÞ

¼Kg;h
� ðhÞ:

ð5Þ

Thus, the hth column of K is a right eigenvector of Q

with eigenvalue � ðhÞ. The same argument with f in place of  

shows that the hth column of K is a right eigenvector of P with

eigenvalue �fðhÞ. However, P ¼ expðQÞ so the eigenvalues of P

are the exponentials of the corresponding eigenvalues of Q. tu
As noted in the discussion after (3), � ðgÞ is real for any g. Thus,

Lemma 2.2 implies the following.

Observation 2.3. Any edge with real edge parameters will have real and

nonnegative Fourier transform �f ðeÞ.

Thus, any tree with nonnegative edge parameters has “biologically

meaningful” parameters in the language of [2], though the

converse does not hold. We also note that by (4) the qg are real;

thus, the logarithm in (7) retains its usual meaning as a mapping

between real numbers.
We will now present a second version of Fourier conjugation.

By Lemma 2.2 and the definition of Fourier transform

 ðhÞ ¼ ½K�1 logKf 	h; ð6Þ

where the subscript h denotes the h component of the vector. The

following theorem is Theorem 6 of [14] in the presence of (6).

Theorem 2.4 ([14]). Let ��ðe; hÞ be the element of Gm which assigns h to

all leaves in �ðeÞ and 0 to all others. Then,

 ðeÞðhÞ ¼ ½H�1 log q	�ðe;hÞ: ð7Þ

Note that the log in (7) is entry-wise.
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3 FOURIER TRANSFORM INEQUALITIES: PATH VERSION

In this section, we show first that one can very easily extract
specific �f ðeÞðgÞ terms by taking ratios of certain qg terms. Then,
basic inequalities for the �f ðeÞðgÞ terms will lead to inequalities in the
qg. Let pði; jÞ be the set of edges on the path between nodes i and j
in the tree (i and j may or may not be leaves). Now, define

F ði; j; gÞ ¼
Y

e2pði;jÞ

�f ðeÞðgÞ:

We record the following facts for future use.

Lemma 3.1.

1. Let � be a node on the path from i to j in a tree. Then,

F ði; �; gÞ � F ð�; j; gÞ ¼ F ði; j; gÞ:

2. F ði; j; gÞ ¼ F ðj; i; gÞ.
3. F ði; j; gÞ ¼ F ði; j;�gÞ.

Proof. Parts 1 and 2 are clear from the definition. Equation (3)

implies 3. tu

The following fact is a simple application of the above lemma

and Theorem 2.1.

Lemma 3.2. Let i and j be leaves, and let g have gi ¼ h, gj ¼ �h and all

other components zero. Then, qg ¼ F ði; j;hÞ.

The first identity is for pendant edges. Denote the set of leaves

by L.

Proposition 3.3. Given some pendant edge e, let i denote the leaf on e,
and let � be the internal node on e. Pick j and k any leaves distinct
from i such that the path pðj; kÞ contains �. Let wðgi; gj; gkÞ 2 GL
assign state gx to leaf x for x 2 fi; j; kg and the identity to all other
leaves. Then,

�f ðeÞðhÞ
h i2

¼
qwðh;�h;0Þ � qwð�h;0;hÞ

qwð0;�h;hÞ
: ð8Þ

Proof. Lemmas 3.1 and 3.2 show

qwðh;�h;0Þ ¼ �f ðeÞðhÞ � F ð�; j; hÞ;
qwð�h;0;hÞ ¼ �f ðeÞðhÞ � F ð�; k;hÞ;
qwð0;�h;hÞ ¼F ð�; j; hÞ � F ð�; k;hÞ:

tu

A similar proof implies the next identity, which is for internal

edges.

Proposition 3.4. Pick some internal edge e; say the two nodes on either

side of e are � and �0. Choose i, j (respectively, i0; j0) such that pði; jÞ
(respectively, pði0; j0Þ) contains � but not �0 (respectively, �0 but not

�). Let zðgi; gj; gi0 ; gj0 Þ 2 GL assign state gx to leaf x for x 2
fi; j; i0; j0g and the identity to all other leaves. Then

�f ðeÞðhÞ
h i2

¼
qzðh;0;�h;0Þ � qzð0;�h;0;hÞ
qzðh;�h;0;0Þ � qzð0;0;�h;hÞ

: ð9Þ

Now, constraints on the �f ðeÞðhÞ will imply inequalities in the qg.
Such nontrivial constraints exist; we review these constraints now
for the usual group-based models. First, we investigate the two-
state symmetric (CFN) model, which was described in the
introduction. There is only one nontrivial component �f ðeÞð1Þ of
the Fourier transform along an edge, which is expð�2�ðeÞÞ, where
�ðeÞ is the “branch length” of that edge. Now, 0 � �ðeÞ is
equivalent to

�f ðeÞð1Þ � 1: ð10Þ

Inserting the values for �f ðeÞð1Þ from Propositions 3.3 and 3.4 into

this equation give the edge-parameter inequalities for each edge. In

summary, we have the following proposition.

Proposition 3.5. Assume that q is the ZZ2-Fourier transform of a site-

pattern frequency vector under the CFN model. If q satisfies a

complete set of phylogenetic invariants for a tree T and a set of

inequalities gained by substituting an instance of (8) or (9) into the

square of (10) for each edge e of T , then q is the transform of an

expected site-pattern frequency vector of T for some assignment of

nonnegative branch lengths to T . Conversely, any tree with

nonnegative branch lengths will satisfy such a set of inequalities.

As a quick application, we demonstrate how these inequalities

exclude the pathological example described in Section 1. For the

internal edge of this quartet tree under the CFN model, we should

have

q1010q0101

q1100q0011
¼ �f ðeÞð1Þ
h i2

� 1:

However, by substituting in values from Table 1, the above ratio is

��2, which is greater than one.
For the four-state models, we will only discuss the Kimura

three parameter (K3P) model. It is the most general group-based

four-state model; results for this model extend to less general

models by choosing transition matrices with extra symmetries.

The K3P model is associated with the group ZZ2 � ZZ2. Thus, K

for this model is the Hadamard matrix of order four, which is

the Kronecker product of two Hadamard matrices of order two.

We make the identifications

A ¼ ð0; 0Þ; C ¼ ð1; 0Þ; G ¼ ð0; 1Þ; T ¼ ð1; 1Þ: ð11Þ

We write the column vector  as

�ð ðCÞ þ  ðGÞ þ  ðT ÞÞ;  ðCÞ;  ðGÞ;  ðT Þ½ 	T :

Then, by Lemma 2.2, we have that �f ðeÞðAÞ ¼ 1 and

�fðeÞðCÞ ¼ exp �2  ðCÞ þ  ðT Þð Þð Þ;
�f ðeÞðGÞ ¼ exp �2  ðGÞ þ  ðT Þð Þð Þ;
�f ðeÞðT Þ ¼ exp �2  ðCÞ þ  ðGÞð Þð Þ:

ð12Þ

The following equations are equivalent to requiring  ðCÞ,  ðGÞ,
and  ðT Þ to be nonnegative via (12):

�f ðeÞðCÞ�f ðeÞðT Þ � �f ðeÞðGÞ; ð13Þ

�f ðeÞðGÞ�f ðeÞðT Þ � �f ðeÞðCÞ; ð14Þ

�f ðeÞðCÞ �f ðeÞðGÞ � �f ðeÞðT Þ: ð15Þ

In summary, we have the following proposition.

Proposition 3.6. Assume that q is the ZZ2 � ZZ2 Fourier transform of a

site-pattern frequency vector under the K3P model. If q satisfies a

complete set of phylogenetic invariants for a tree T and a set of

inequalities gained by substituting an instance of (8) or (9) into the

square of (13), (14), and (15) for each edge e of T , then q is the

transform of an expected site-pattern frequency vector of T for some

assignment of nonnegative edge parameters to T . Conversely, any tree

with nonnegative edge parameters will satisfy such a set of inequal-

ities.

For example, say we substitute (9) into the square of (13). This

gives
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qzðC;0;C;0Þ � qzð0;C;0;CÞ
qzðC;C;0;0Þ � qzð0;0;C;CÞ

�
qzðT;0;T ;0Þ � qzð0;T ;0;T Þ
qzðT;T ;0;0Þ � qzð0;0;T ;T Þ

�
qzðG;0;G;0Þ � qzð0;G;0;GÞ
qzðG;G;0;0Þ � qzð0;0;G;GÞ

;

which is equivalent to a monomial inequality of degree six.
Before moving on, we highlight that (8) is essentially concerned

with induced subtrees on only three taxa, and (9) is concerned
with induced subtrees on only four taxa. Inequalities on the
collection of these subtrees imply positivity of edge parameters for
the entire tree.

4 FOURIER TRANSFORM INEQUALITIES:
CANONICAL VERSION

The previous section described a relatively simple set of inequal-
ities which can be computed for any edge of a tree. However, some
readers may feel uncomfortable with the fact that these inequalities
involve some arbitrary choice. In this section, we give a
“canonical” version of the edge parameter inequalities, which is
a simple consequence of Theorem 2.4. This version of the
inequalities also gives a clearer understanding of the underlying
geometry.

We now specialize to the case of either the CFN model or the
K3P model (this again includes K3P with extra symmetries, such as
JC DNA and K2P). In these cases, the entries of the Fourier
transform matrix K are �1.

Proposition 4.1. Let G ¼ ZZ2 or ZZ2 � ZZ2 and ��ðe; hÞ be the element of
Gm which assigns h to all leaves in �ðeÞ and 0 to all others. Then, for
any q generated on a tree with nonnegative edge parametersY

g: d�ðe;hÞðgÞ¼1

qg �
Y

g: d�ðe;hÞðgÞ¼�1

qg: ð16Þ

Conversely, any tree (with edge parameters) whose q satisfies (16)
for any e and h has nonnegative edge parameters.

Proof. Recall that H�1 ¼ jGjmH. Thus, (7) is

jGj�m ðeÞðhÞ ¼ ½H log q	�ðe;hÞ; ð17Þ

the left-hand side of which is nonnegative by our main
assumption. Exponentiate (17); the left-hand side will be not
less than one, and the right-hand side becomes a ratio with
those qg such that d��ðe; hÞðgÞ ¼ 1 on top and those qg such thatd��ðe; hÞðgÞ ¼ �1 on the bottom. Then, multiply to clear denomi-
nators. tu
Although we have specialized to groups where K has real

entries, we note here that equivalent (though more complex) such
inequalities exist in all cases. First, we claim that qh ¼ q�h for any
h. Indeed, assuming time reversibility, we have f ðeÞðgÞ ¼ f ðeÞð�gÞ,
thus qh ¼ q�h by (4). It follows that the coefficients of the qh in
H�1q are real. Therefore, the same exponentiation process in
Proposition 4.1 works, although the qh may now have exponents
different than �1.

The “path” inequalities of Propositions 3.3 and 3.4, and the
“canonical” inequalities of Proposition 4.1, are equivalent. Indeed,
they each express the equation  ðeÞðhÞ � 0 for various e and h.
However, the expressions are different, but by the definition of
invariants, one can go from one to the other formulation via a
complete set of phylogenetic invariants [5].

The previous paragraph establishes equivalence between the
two formulations in principle; we present an example here to
show how the transformation works. Assume a quartet tree of
topology 12j34; use notation as in Section 1. First, we investigate
the pendant edge leading to taxon 1. By (16), that edge having
nonnegative edge length is equivalent to

q0000 q0110 q0011 q0101 � q1100 q1010 q1001 q1111: ð18Þ

A couple of algebraic steps using the phylogenetic invariant
q1100q0011 ¼ q1111 and the fact that q0000 ¼ 1 shows that (18) is
equivalent to

1 � q1100 q1001

q0101

� �
q1100 q1010

q0110

� �
;

which is the product of the two “path” pendant edge length
inequalities. Similarly, the internal edge being nonnegative is
equivalent to

1 � q1010 q0101 q1001 q0110

q0000 q1111 q1100 q0011
¼ q1010 q0101

q1100 q0011

� �
q1001 q0110

q1100 q0011

� �
;

where the right-hand side of the equality is the product of the two
“path” internal edge length inequalities.

The canonical construction generalizes the inequalities to the

more general setting of group-based mutation models on split

networks as formulated by Bryant [15]. Assume the set of splits is

labeled �. In this elegant formulation, one assigns mutation

probabilities to each possible split, i.e., a probability distribution on

the group G for each split. Assuming independence of these

distributions, one gets a probability distribution on G� by

multiplication. From there, the probability of a single site-pattern

h (i.e., the assignment of a group element to each taxon) is the sum

of the probabilities of all elements of G� which give h on the

leaves.
Fourier conjugation also works in this setting. Although

Bryant’s paper [15] only develops the conjugation in the case of
models with a fixed rate matrix and “branch length” varying
among splits, there is also an invertible transformation for the
setting where one allows the whole rate matrix to vary. We will
apply this extended version and call the set of  ðeÞ for splits e “split
parameters” analogous to the edge parameters we have been
describing so far. Although we do not go into details here, the
proof of the Fourier conjugation formula in the extended case is
similar to that in [15]. One can then obtain an equation for the
Fourier conjugation written exactly as in (7) but with a generalized
definition of the terms: “root” the split network at the taxon n, and
so redefine �ðeÞ to be all of the taxa on the opposite “side” of the
split from n. For example, �ð12j34Þ is the set {1, 2} as in this case
n ¼ 4.

Definition 4.2. Let YG;m be the points of q-space which satisfy
inequalities (16) for each split e and each h 2 G.

Observation 4.3.

i. YG;m is the image of the nonnegative split parameter split
networks under Hadamard conjugation.

ii. YG;m is contractible.
iii. The points of q-space corresponding to trees of topology T

with nonnegative edge parameters are the zero set of the
phylogenetic invariants for T intersected with YG;m. These
points sit on the boundary of YG;m for m > 3.

Proof. We note that YG;m is the (injective) image of the set of
nonnegative split parameter vectors in ðIR�0Þ2

m�1 �ðjGj�1Þ. For i,
the inequalities (16) precisely specify positivity of split
parameters. For ii, the required homotopy simply uniformly
shrinks every split parameter to zero. The first sentence of iii is
equivalent to Proposition 4.1. For the second sentence, the
boundary of YG;m consists of the image of split networks with at
least one zero split parameter. Phylogenetic trees are simply
split networks such that only a compatible set of split
parameters are nonzero. tu

This series of observations suggests that rather than phyloge-

netic “orange” [4] with one orange slice for each tree topology, one
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might think of a phylogenetic “soccer ball” with one panel of the

soccer ball for each tree topology. Indeed, the set of Fourier

transformed points corresponding to any tree live on the boundary

of a higher dimensional contractible object. However, it should be

noted that not every point of the boundary of YG;m corresponds to a

phylogenetic tree, and in fact, the panels are of strictly lower

dimension than the boundary of the soccer ball.
Furthermore, we now show that the soccer ball YG;m is not

convex. Recall that �f ðeÞðgÞ is real by the discussion after (3). Then,

we have the following lemma.

Lemma 4.4. The components of the Fourier transformed mutation

probability vector �f ðeÞðgÞ are less than or equal to one for any edge e

with nonnegative edge parameters.

Proof. By Lemma 2.2, it suffices to show that � ðeÞðgÞ is nonpositive.

By the definition of  

 ð0Þ ¼ �
X
g 6¼0

 ðgÞ;

which implies that � ðeÞðgÞ is nonpositive by the definition of the

discrete Fourier transform. tu

Proposition 4.5. YG;m is not convex for m � 3 and G ¼ ZZ2 or ZZ2 � ZZ2.

Proof. We report the argument for the case of G ¼ ZZ2 � ZZ2 (i.e.,

K3P); the case of G ¼ ZZ2 is analogous but easier. We label the

sates A, C, G, T as in (11). Pick an arbitrary tree T on m taxa.

Find a cherry (two-taxon rooted subtree) of T and label the

leaves of T with 1, 2. Number the edge leading to taxon 1 with

1, the edge leading to taxon 2 with 2, and the edge meeting 1

and 2 with 3. Pick arbitrary 0 � �1, �2, �3 � 1 such that

�1�2 < �2
3 ð�1 þ �2Þ=2ð Þ2: ð19Þ

This is easily achieved by fixing �2 and �3 and taking �1 to be

small.
We will construct two vectors q0, q00 2 YG;m such that q :¼

ðq0 þ q00Þ=2 is not in YG;m. The vectors q0 and q00 will be defined
via the Fourier transform by specifying their �f ðeÞðgÞ. It can be
checked that q0 and q00 sit in YG;m using Lemma 2.2, then taking
the logarithm and the inverse Fourier transform.

Let V ¼ fC; Tg. For q0 set

�f ð1ÞðgÞ ¼ �1; �f ð2ÞðgÞ ¼ �2; �f ð3ÞðgÞ ¼ �3

for g 2 V , and �f ðeÞðgÞ ¼ 1 otherwise. For q00 set

�f ð1ÞðgÞ ¼ �2; �f ð2ÞðgÞ ¼ �1; �f ð3ÞðgÞ ¼ �3

for g 2 V , and �f ðeÞðgÞ ¼ 1 otherwise.
We claim that q violates (16) with e ¼ 3 and h ¼ C, and

thus does not sit in YG;m. To establish this claim, we calculate
each side of (16). First, note that ĈðgÞ ¼ �1 for g 2 V and is 1
otherwise. Thus, d��ð3; CÞðgÞ ¼ �1 exactly when jfg1; g2g \ V j is
odd, and is 1 otherwise (here and below the notation gi
denotes the ith-taxon component of g).

Define quðx1 ;x2Þ to be qg for any g such that g1 ¼ x1 and
g2 ¼ x2. This quðx1 ;x2Þ is well defined via (4) because
all �f ðeÞðgÞ ¼ 1 except when e ¼ 1; 2; 3. Noting that C þ C ¼ 0,
we see that quðC;CÞ ¼ �1�2 by (4). Similarly,

quðC;AÞ ¼ quðA;CÞ ¼ �3ð�1 þ �2Þ=2:

Because we have arranged that �f ðeÞðAÞ ¼ �f ðeÞðGÞ ¼ 1 and
�f ðeÞðCÞ ¼ �f ðeÞðT Þ for both q0 and q00, there are three cases for
quðx1 ;x2Þ. If x1 and x2 are in V , then quðx1 ;x2Þ ¼ quðC;CÞ. If jfx1; x2g \
V j is one, then quðx1 ;x2Þ ¼ quðC;AÞ. If neither x1 nor x2 are in V , then
quðx1 ;x2Þ ¼ 1.

Thus, (16) is in this case

q4
uðC;CÞ

� �4m�2

� q8
uðC;AÞ

� �4m�2

:

Taking both sides to the power of 41�m and substituting gives

�1�2 � �2
3 ð�1 þ �2Þ=2ð Þ2;

violating (19). tu
Proposition 4.5 has an interesting phylogenetic interpretation

along the lines of [20]: there are mixtures of two site-pattern
frequency vectors corresponding to trees such that the split
network corresponding to the mixture has negative edge para-
meters. However, the trees used in the proof had many edge-
parameters zero; this is not strictly necessary though it greatly
simplifies the proof.

5 CONSEQUENCES AND CONCLUSIONS

In summary, we have presented a collection of inequalities in the
Fourier transformed site-pattern frequency space which are
equivalent to the assumption that group-based mutation rate
matrices have nonnegative off-diagonal entries. We are motivated
in part by the idea of formulating maximum likelihood as a
constrained optimization problem [5], [9]. We noted in Section 1
that the previously known constraints are not sufficient to ensure
that the result of the constrained optimization is in fact a proper
tree. As described in Propositions 3.5, 3.6, and 4.1, our inequalities
complete the set of constraints: if a q satisfies a complete set of
phylogenetic invariants and the inequalities described here, then it
does indeed correspond to a bona fide tree. Thus, phylogenetic
invariants along with the edge-parameter inequalities could indeed
be safely used to formulate maximum-likelihood phylogenetic
estimation as a constrained optimization problem.

We also defined YG;m, which is the set of q which come from
split networks with nonnegative edge parameters. We noted that
the tree images for each tree topology sit on the boundary of YG;m.
Here, we showed that YG;m is not convex at a number of points.
Note that because YG;m is cut out by monomial inequalities (16),
one would expect that YG;m would be nonconvex at “most” points.

As the edge-parameter inequalities are the second component
of the constraints for phylogenetic trees, one might wonder if they
could be used for phylogenetic inference in a manner analogous to
phylogenetic invariants [3], [10]. In a sense, these inequalities
appear more natural than phylogenetic invariants for the purpose
of determining the tree corresponding to a data set: given a real-
world data set, one might actually hope that the inequalities
presented here could be satisfied, whereas phylogenetic invariants
(which are equalities) will essentially never be. Using the
terminology above, one might hope that data would sit in the
interior of YG;m even though one would never expect data to sit on
its boundary.

This hope is not justified for simulated data on a tree. Indeed,
one can think of the simulated data points as some distribution
centered on the expected distribution. Recall that the set of trees is
simply the set of split networks with some edge parameters set to
zero. If the simulation distribution does not have support on
some lower-dimensional surface, then the preimage of the
distribution will almost certainly have points with negative
coordinates in parameter space. Said another way, it is improb-
able that a sample from a distribution centered on a “corner” of
the boundary of YG;m would sit in the interior of YG;m. As an
example, one might look at Figure 17.1 of [7], where negative split
parameters (besides that for the trivial split) are encountered in a
simulation. Despite these challenges, edge-parameter inequalities
may well prove useful for inference.
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We acknowledge that all of the work presented here is for
group-based models. This is a rather strong restriction, as all
group-based models must have uniform stationary distribution;
real data sets rarely have this feature. Presumably, there are
inequalities corresponding to those presented here for nongroup-
based models. However, as no Fourier transform is available for
those models, the formulation may be very complex.
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