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ABSTRACT
In microbial ecology studies, the most commonly used ways of investigating alpha
(within-sample) diversity are either to apply non-phylogenetic measures such as
Simpson’s index to Operational Taxonomic Unit (OTU) groupings, or to use classical
phylogenetic diversity (PD), which is not abundance-weighted. Although alpha
diversity measures that use abundance information in a phylogenetic framework
do exist, they are not widely used within the microbial ecology community. The
performance of abundance-weighted phylogenetic diversity measures compared to
classical discrete measures has not been explored, and the behavior of these mea-
sures under rarefaction (sub-sampling) is not yet clear. In this paper we compare
the ability of various alpha diversity measures to distinguish between different
community states in the human microbiome for three different datasets. We also
present and compare a novel one-parameter family of alpha diversity measures,
BWPDθ , that interpolates between classical phylogenetic diversity (PD) and an
abundance-weighted extension of PD. Additionally, we examine the sensitivity of
these phylogenetic diversity measures to sampling, via computational experiments
and by deriving a closed form solution for the expectation of phylogenetic quadratic
entropy under re-sampling. On the three datasets, a phylogenetic measure always
performed best, and two abundance-weighted phylogenetic diversity measures were
the only measures ranking in the top four across all datasets. OTU-based measures,
on the other hand, are less effective in distinguishing community types. In addition,
abundance-weighted phylogenetic diversity measures are less sensitive to differing
sampling intensity than their unweighted counterparts. Based on these results we
encourage the use of abundance-weighted phylogenetic diversity measures, especially
for cases such as microbial ecology where species delimitation is difficult.

Subjects Biodiversity, Bioinformatics, Ecology, Microbiology, Statistics
Keywords Alpha diversity, Diversity indices, Phylogenetic diversity, Microbial ecology,
Human microbiome

INTRODUCTION
It is now well accepted that incorporating phylogenetic information into alpha (single-

sample) and beta (between-sample) diversity measures can be useful in a variety of

ecological contexts. Phylogenetic equivalents of all of major alpha diversity measures have
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Table 1 Overview of phylogenetic diversity measures used in the text.

phylogenetic diversity (Faith, 1992)

phylogenetic generalization of species count

phylogenetic quadratic entropy (Rao, 1982; Warwick & Clarke, 1995)

phylogenetic generalization of the Simpson index

phylogenetic entropy (Allen, Kon & Bar-Yam, 2009)

phylogenetic generalization of the Shannon index
qD(T) (Chao, Chiu & Jost, 2010)

phylogenetic generalization of Hill numbers

BWPD1 (Barker, 2002; Vellend et al., 2011)

abundance-weighted version of phylogenetic diversity

BWPDθ (this paper)

one-parameter family interpolating between PD and BWPD1

been developed (Table 1). Starting with Faith’s original definition of phylogenetic diversity

(Faith, 1992), which generalizes species count, there are now phylogenetic generalizations

of the Simpson index to Rao’s quadratic entropy (Rao, 1982; Warwick & Clarke, 1995),

the Shannon index to phylogenetic entropy (Allen, Kon & Bar-Yam, 2009), and the

Hill numbers to qD(T) (Chao, Chiu & Jost, 2010). Phylogenetic diversity itself has been

extended to incorporate taxon counts (Barker, 2002) and proportional abundance (Vellend

et al., 2011). There have also been abundance-weighted measures that explicitly measure

phylogenetic community structure (Fine & Kembel, 2011), or an “effective number of

species” (Chao, Chiu & Jost, 2010). Many diversity measures can be tidily expressed in the

framework of Leinster & Cobbold (2012), although the expression of phylogenetic diversity

measures for non-ultrametric trees is complex.

In this paper we use three example human microbiome datasets to demonstrate the

utility of abundance-weighted phylogenetic diversity measures. We also introduce a

one-parameter family interpolating between classical PD and an abundance-weighted

generalization. We call the parameter θ and denote the one-parameter family BWPDθ ;

BWPD0 is classical PD, whereas BWPD1 is balance-weighted phylogenetic diversity,

effectively PDaw of Vellend et al. (2011). Intermediate values of θ allow a partially-

abundance-weighted compromise. Such a compromise has recently been shown to be

useful for measuring beta diversity, with the introduction of a one-parameter family of

“generalized UniFrac” measures (Chen et al., 2012). We use the name Balance Weighted

Phylogenetic Diversity as described below because there are a variety of abundance

weighted phylogenetic diversity measures. We compare the behavior of PD measures,

including BWPDθ , under various levels of sampling using theory and example datasets.

MATERIALS AND METHODS
Datasets
We apply the methods described below to three previously described 16S rRNA surveys of

the human microbiome. The first two datasets are composed of samples from “normal”

and dysbiotic microbial communities, where previous studies have associated changes
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in diversity with changes in health. The third dataset investigates the changes of the skin

microbiome through time.

Bacterial vaginosis
First, we reanalyze a pyrosequencing dataset describing bacterial communities from

women being monitored in a sexually transmitted disease clinic for bacterial vaginosis

(BV). BV has previously been shown to be associated with increased community diversity

(Fredricks, Fiedler & Marrazzo, 2005). For this study, swabs were taken from 242 women

from the Public Health, Seattle and King County Sexually Transmitted Diseases Clinic

between September 2006 and June 2010 of which 220 samples resulted in enough material

to analyze (Srinivasan et al., 2012).

Selection of reference sequences and sequence preprocessing were performed using the

methods described in Srinivasan et al. (2012). 452,358 reads passed quality filtering, with a

median of 1,779 reads per sample (range: 523–2,366).

Oral periodontitis
We also utilize sequence data from a study of subgingival communities in 29 subjects with

periodontitis, along with an equal number of healthy controls (Griffen et al., 2011a). The

publication analyzing this dataset showed increased community diversity in samples from

dysbiotic patients compared to healthy controls. Raw sequences were filtered, retaining

only those reads with: a mean quality score of at least 25, no ambiguous bases, at least 150

base pairs in length, and an exact match to the sequencing primer and barcode. A total

of 759,423 reads passed quality filtering, with a median of 8,320 reads per sample (range:

4,096–14,319).

As the phylogenetic placement method used below to calculate our measures requires a

reference tree and alignment, we created a tree with FastTree 2.1.4 (Price, Dehal & Arkin,

2010) using the alignment and accompanying taxonomic annotation from the curated

CORE database of oral microbiota (Griffen et al., 2011b).

Skin microbiome through time
Our third dataset is a study of skin microbial diversity through adolescence (Oh et al.,

2012). Aligned sequences were obtained courtesy of the authors, although sequence data

is available under the accession numbers [GQ000001] to [GQ116391] and can be accessed

through BioProject ID 46333. A total of 90,142 Sanger sequences were available, with a

median of 693 sequences per sample (range: 317–2884).

Balance-weighted phylogenetic diversity
In this section we introduce BWPDθ , our one-parameter family interpolating between

classical PD and fully balance-weighted phylogenetic diversity. We will primarily consider

so-called unrooted (Pardi & Goldman, 2007) phylogenetic diversity, which does not

necessarily include the root. The case of rooted phylogenetic diversity can be calculated

in a similar though simpler way as described below. Although we will primarily be working

in an unrooted sense, it will be useful to use terminology that corresponds to the rooted

case. For this reason, if the tree is not already rooted, assume an arbitrary root has been
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Figure 1 gθ curves for various θ parameters. As θ goes to zero, the gθ converge pointwise to g, which is
1 on the interior of the unit interval and 0 on the boundaries.

chosen; let the proximal side of a given edge be the side that contains the root and distal be

the other.

We will describe BWPDθ in terms of a phylogenetic tree T with leaves L, and a

contingency table describing the number of observations of the organisms at the leaves in

various samples. The contingency table has rows labeled with the leaves of T, and columns

labeled by samples. In microbial ecology this is frequently known as an OTU table. The

entry corresponding to a given leaf and a given sample is the number of times that leaf was

observed in that sample.

The classical (unrooted) phylogenetic diversity of a given sample in this context is the

total branch length of the tree subtended by the leaves in that sample.

The path to generalizing PD is to note that this can be expressed as a sum of branch

lengths multiplied by a step function. Let f (x) be the function that is one for x > 0 and zero

otherwise. Let g(x)=min(f (x),f (1− x)) and Ds(i) be the fraction of reads in sample s that

are in leaves on the distal side of edge i. Phylogenetic diversity can be then expressed as

PDu(s)=
∑

i

`i g(Ds(i)). (1)

That is, the sum of edge lengths in T which have reads from s on both the distal and

proximal side.

Note that the step function g is the limit of a one-parameter family of functions (Fig. 1).

Indeed, defining

gθ (x)= [2min(x,1− x)]θ , (2)
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g is the pointwise limit of the gθ on the closed unit interval as θ goes to zero. Thus our

one-parameter generalization is

BWPDθ (s)=
∑

i

`i gθ (Ds(i)). (3)

Note that when θ = 0 this is PD and when θ = 1 this is an abundance-weighted version of

PD equivalent to executing the1nPD recipe of Barker (2002) up to a multiplicative factor.

The rooted equivalent of (3) is

RBWPDθ (s)=
∑

i

`i(Ds(i))
θ , (4)

which interpolates between rooted PD and an abundance-weighted version. Vellend et

al. (2011) describe a measure, PDaw, which is equal to RBWPD1 multiplied by the total

number of branches in T.

We call BWPD1 balance-weighted phylogenetic diversity because it weights edges

according to the balance of read fractions on either side of an edge–edges with even

amount of mass on either side are up-weighted, while edges with an uneven balance of

mass are down-weighted. Indeed, if |x− (1− x)| is thought of as the imbalance of read

fraction on either side of an edge, then 1− |x− (1− x)| is a measure of balance; note that

on the unit interval, 2min(x,1− x)= 1− |x− (1− x)|. Because a small x or an x close to 1

gives a small coefficient in the summation, small collections of reads or small perturbations

of the read distribution will not change the value of BWPD1 appreciably.

Calculation of PD measures in example applications
Reads from the vaginal and oral studies were placed on a tree created from a curated

set of taxonomically annotated reference sequences. As phylogenetic entropy and qD(T)

operate on a rooted phylogeny, reference trees were assigned a root taxonomically

(Matsen & Gallagher, 2012) meaning that a root was found that best separated high-level

taxonomic groupings. pplacer was run in posterior probability mode (using the -p and

--informative-prior flags), which defines an informative prior for pendant branch

lengths with a mean derived from the average distances from the edge in question to the

leaves of the tree. The resulting set of placements were classified at the family rank using

a hybrid classifier implemented in the guppy tool from the pplacer suite. The hybrid

classifier assigns taxonomic annotations to sequences using the combination of a naı̈ve

Bayes classifier (Wang et al., 2007) with a phylogenetic classifier (N Hoffman, A Gallagher

and F Matsen, unpublished data). Any reads that could not be confidently classified to the

family rank were not used in measures based on classification.

Full-length 16S sequences were available for the skin data, and so a more traditional

tree-building approach was used. Representative OTUs were chosen for each site by

clustering at 97% identity using USEARCH 5.1 (Edgar, 2010), with trees built on OTU

centroids using FastTree (Price, Dehal & Arkin, 2010). To conform with methods used in

Oh et al. (2012), the naı̈ve Bayes classifier (Wang et al., 2007) was used to infer genus-level

classifications to taxonomically root the tree; in our case we used the RDP classifier v2.5.
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The contingency (OTU) tables generated by clustering were made available to our tools via

the BIOM (McDonald et al., 2012) format.

PDu (unrooted PD), phylogenetic quadratic entropy (Rao, 1982), phylogenetic entropy

(Allen, Kon & Bar-Yam, 2009), and qD(T) (Chao, Chiu & Jost, 2010) were implemented

for phylogenetic placements in the freely-available pplacer suite of tools (Matsen, Kodner

& Armbrust, 2010) (http://matsen.fhcrc.org/pplacer) in the subcommand guppy fpd.

Prior to diversity estimation, either phylogenetic placements were rarefied to the read

count of the specimen in the dataset with the fewest sequences using guppy rarefy, or

the corresponding rarefaction on full-length sequences was performed with the QIIME

(Caporaso et al., 2010) rarefaction tool single rarefaction.py. The mean value of each

statistic over 100 such rarefactions was used for analysis.

Discrete measures of alpha diversity and richness were calculated on contingency tables

obtained from clustering and taxonomic classification. Sequences were clustered into

Operational Taxonomic Units (OTUs) at a 97% identity threshold using USEARCH 5.1

(Edgar, 2010). Similar results were observed when clustering at 95% identity (results not

shown). OTU counts and family-level taxon counts were then rarefied as above in R 3.0.1

(R Development Core Team, 2013) using the vegan package (Oksanen et al., 2012). We

obtained values for the Simpson (1949) and Shannon (1948) diversity indices, as well as

the Chao1 (Chao, 1984) and ACE (Chao & Lee, 1992) measures of species richness using

vegan functions diversity and estimateR.

Comparative analysis of alpha diversity measures
To investigate the relation between various measures of alpha diversity, we calculated

Pearson’s r between all pairs of measures using the function rcorr from the R package

Hmisc (Harrell, 2012). We then performed hierarchical clustering with the R function

hclust, using d = 1− r as the distance between two measures.

Association of each measure with clinical criteria for the first two datasets was evaluated

by examining the accuracy of a logistic regression using the measure as the sole predictor

of whether the sample came from a “normal” or dysbiotic subject. In the vaginal dataset,

we assessed each measure’s ability to predict whether a sample was from a subject positive

for BV by Amsel’s criteria, a clinical diagnostic method (Amsel et al., 1983). In the oral

dataset, we assessed each measure’s ability to predict whether a sample was from a healthy

control, or a subject with periodontitis. Accuracy in predicting sample community state

was assessed by leave-one-out cross-validation using the R package boot (Davison &

Hinkley, 1997; Canty & Ripley, 2012).

For the vaginal dataset, we also calculated R2 values using each measure individually as

a predictor for sample Nugent score in a linear regression. The Nugent score provides a

diagnostic score for BV which ranges from 0 (BV-negative) to 10 (BV-positive) based on

presence and absence of bacterial morphotypes as viewed under a microscope (Nugent,

Krohn & Hillier, 1991).

We calculated p-values to compare within- and between-stratification variability using

R’s built-in t.test function for the vaginal data, which had a binary stratification, and the
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Table 2 Correlation and predictive performance of the various alpha diversity measures applied to
the vaginal dataset. Rows are ordered by increasing mean rank across performance measurements.
Nugent R2:R2 value using the measure as a predictor, and the Nugent score as response in a linear
model. Amsel accuracy: proportion of specimens with correct BV classification under a leave-one-out
cross-validation. Amsel p-value: p-value from a two-sample t-test on values stratified by BV classification.
“OTU” designates the measure applied to 97% clustering groups, and “Family” designates taxonomic
classification at the family level. Measures described in main text.

Measure Amsel accuracy Nugent R2 Amsel p-value Mean rank

PDu 0.834 0.737 1.84E−35 1.3

BWPD0.25 0.836 0.735 1.98E−35 2.0

Simpson (Family) 0.817 0.735 4.11E−33 4.0

BWPD0.5 0.827 0.700 3.33E−33 4.3

Shannon (Family) 0.813 0.724 2.28E−32 5.3

Phylo. entropy 0.831 0.679 1.81E−31 5.7

Chao1 (Family) 0.813 0.704 6.27E−31 7.0
0.5D(T) 0.818 0.658 7.47E−29 8.0
0.25D(T) 0.809 0.682 2.25E−30 8.3

Phylo. quad. entropy 0.813 0.648 7.89E−30 9.0

BWPD1 0.795 0.611 5.38E−28 11.0

Chao1 (OTU) 0.766 0.488 1.64E−23 12.7

ACE (Family) 0.766 0.491 2.82E−11 13.0

ACE (OTU) 0.764 0.469 6.82E−22 13.7

Shannon (OTU) 0.758 0.380 5.27E−16 14.7

Simpson (OTU) 0.697 0.191 1.42E−07 16.0

aov function for the oral and skin datasets. The vaginal dataset was stratified by Amsel’s

criterion, the oral dataset by condition and sampling site, and the skin microbiome dataset

by Tanner scale of physical development (Oh et al., 2012). Note that we are not presenting

these uncorrected p-values as evidence that there is an interesting relationship between the

microbiome and a given stratification, but rather are using p-values as a way of measuring

within-stratum heterogeneity compared to between-stratum heterogeneity for the various

measures.

RESULTS
Application to the human microbiome
Vaginal microbiome
Like Srinivasan et al. (2012) and many others in the field, we observe greater diversity

in BV positive specimens using a variety of diversity and richness measures (Fig. S1). In

particular, this is true for BWPDθ for a variety of values of θ (Fig. S2).

In the vaginal data, phylogenetic measures of alpha diversity have better cross-validation

accuracy for the Amsel classification and better correlation with the Nugent score

than discrete OTU-based measures (Table 2). All measures were somewhat accurate in

identifying community state, with even the worst performers classifying almost 70% of
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Figure 2 Dendrogram relating alpha diversity measures applied to the vaginal dataset.

samples correctly. BWPD0.25, BWPD0.5, PDu, and phylogenetic entropy perform well

predicting BV status. Correlation with Nugent score varies from 0.19 using Simpson

(OTU) to 0.74 using PDu. OTU-based measures rank in the bottom half of the measures

tested, and below all phylogenetic measures.

In the hierarchical clustering of alpha measures on the vaginal dataset, phylogenetic

methods are separated from OTU-based methods (Fig. 2). BWPDθ is similar to different

extant phylogenetic alpha diversity measures for different θ . The Simpson and Shannon

diversity measures cluster together, as do the ACE and Chao1 richness measures.

Figure 3 shows values of BWPDθ calculated before (x-axis) and after (y-axis) a single

rarefaction to 523 sequences per sample. Samples for which the BWPDθ value changes

little lie close to the blue line, which shows the case of no difference between original

and rarefied samples. Increasing θ , which corresponds to increased use of abundance

information, reduces the change in BWPDθ induced by rarefaction. Phylogenetic

quadratic entropy and phylogenetic entropy both show behavior similar to BWPD1, with

rarefaction introducing little effect.

It might be possible to formalize a statement to this effect by computing the expectation

of these alpha measures under rarefaction. However, computing the expectation for

BWPDθ under rarefaction does not appear to be straightforward: the methods of Dremin

(1994) might be applicable in this setting, however, even the integer moments of the

hypergeometric distribution are complicated and the non-integer moments are bound

to be very complex. We have, however, shown in the Appendix that the expectation of

phylogenetic quadratic entropy under rarefaction to k sequences assigned to the tips of a
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Figure 3 Comparison of rarefied and unrarefied values of various phylogenetic alpha diversity measures as applied to the vaginal dataset. The
value of six alpha measures for each specimen using all available sequences is plotted on the x-axis. The value of the alpha measures for each specimen
after a single rarefaction to 523 sequences (the smallest sequence count across specimens) is plotted on the y-axis. The y = x line is shown in blue.
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Table 3 Predictive accuracy of each measure in the oral dataset and p-value from an ANOVA stratified
by disease status and sampling site.

Measure Diseased status accuracy ANOVA p-value Mean rank

Phylo. entropy 0.791 4.97E−09 1.0

BWPD0.5 0.782 6.50E−09 2.0

BWPD0.25 0.755 7.16E−08 4.0

Phylo. quad. entropy 0.770 2.47E−07 4.0

Simpson (Family) 0.776 1.45E−06 4.0
0.5D(T) 0.734 4.74E−06 6.5
0.25D(T) 0.735 4.33E−05 7.0

PDu 0.691 6.37E−06 8.5

Shannon (Family) 0.734 5.32E−05 8.5

BWPD1 0.698 3.57E−04 9.5

Chao1 (OTU) 0.685 9.94E−04 11.0

ACE (OTU) 0.682 1.30E−03 12.0

Simpson (OTU) 0.676 2.39E−02 13.5

Shannon (OTU) 0.672 1.31E−03 14.0

Chao1 (Family) 0.674 2.64E−01 15.0

ACE (Family) 0.663 1.82E−01 15.5

phylogenetic tree is

E[PQEk] =
k− 1

kn(n− 1)

∑
i

`idi(n− di)

where di is the number of sequences falling below edge i and `i is the length of edge i. This is

almost identical to the unrarefied value of phylogenetic quadratic entropy, i.e.

PQE=
1

n2

∑
i

`idi(n− di).

Thus it is not surprising to see that the expectation of PQE under rarefaction is very close to

the original value (Fig. S3) for reasonably large k and n.

Oral microbiome
As previously observed by Griffen et al. (2011a), we find generally higher diversity in

samples from dysbiotic patients (Fig. 4). We evaluated the ability of each alpha diversity

measure to predict whether a sample came from an individual with periodontitis,

regardless of sample collection site, using the above methods.

In the oral dataset, phylogenetic alpha diversity measures incorporating abundance gave

the best predictions of community state (Table 3, Fig. 4). In contrast, classical phylogenetic

diversity performed less well. These results were almost identical in terms of rank order

after applying additional quality filtering steps to correct sequencing errors and remove

potentially chimeric sequences (Table S1).
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Figure 4 Comparison of diversity between samples from healthy controls, healthy sites of dysbiotic patients, and dysbiotic sites of dysbiotic
patients on the oral dataset, using different measures of alpha diversity. “Shallow” means a shallow pocket between tooth and gum tissue, while
“deep” means a sample from a deep pocket between gum tissue that has separated from its tooth. Top row: cluster-based methods. Bottom rows:
phylogenetic methods.

OTU-based methods and phylogenetic methods are not as separated in a hierarchical

clustering as for the vaginal dataset (Fig. S6). However, many of the same pairings are

present in both clusterings: BWPD0.5 with phylogenetic entropy, BWPD1 with quadratic

entropy, Simpson with Shannon, and ACE with Chao1. Interestingly, PDu, BWPD0.25, and

the qD(T)measures all cluster with the discrete richness measures ACE and Chao1.

Like the vaginal dataset, incorporating abundance information decreases the effect of

rarefaction on BWPDθ values (Figs. S4 and S5).

Skin microbiome
To further assess resolution and robustness of phylogenetic diversity measures, we

considered skin microbiome data from a study by Oh et al. (2012). This study tracked

the changes of the skin microbiome through “Tanner” developmental stages of adolescence

(Tanner & Whitehouse, 1976). Because there are five Tanner stages, and they do not have

a monotonic relationship with skin microbiome diversity (Oh et al., 2012), we focused on

ANOVA p-values to see if the diversity measurements had small within-stage heterogeneity

compared to between-stage heterogeneity. To compare the ANOVA p-values associated

with the diversity measurements across the various datasets, we ranked the p-value of the

diversity measures from lowest to highest for each dataset individually. We averaged these

ranks to gain an overall measure of performance. The results again show phylogenetic
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Table 4 ANOVA p-values for various diversity statistics applied to the skin microbiome data of
Oh et al. (2012). Rows are ordered by increasing mean rank across sites.

Ac N Pc Vf Mean rank

PDu 3.34e−02 4.94e−03 3.03e−03 2.28e−04 4.50

BWPD0.25 4.22e−02 1.32e−03 6.37e−03 5.86e−04 5.25

BWPD0.5 8.54e−02 9.85e−05 3.65e−02 5.85e−03 6.00

Shannon (OTU) 6.61e−02 9.48e−02 9.65e−02 1.05e−05 6.50

Chao1 (OTU) 8.00e−02 6.46e−03 3.98e−03 3.18e−03 6.75

Phylo. quad. entropy 2.52e−01 1.12e−05 4.99e−01 1.67e−01 7.50

Phylo. entropy 1.37e−01 1.15e−03 1.55e−01 2.09e−02 7.75
0.5D(T) 8.91e−01 5.63e−04 3.84e−03 9.09e−01 8.25
0.25D(T) 7.00e−01 2.27e−03 2.35e−03 9.41e−01 8.50

BWPD1 3.09e−01 5.95e−05 6.65e−01 5.41e−01 8.50
0D(T) 4.42e−01 1.05e−02 1.38e−03 9.38e−01 8.75

Simpson (OTU) 9.38e−02 4.01e−01 8.49e−01 1.01e−04 8.75

Notes.
The same site abbreviations are used as in their paper: Ac, antecubital fossa; N, nares; Pc, popliteal fossa;
Vf, volar forearm.

measures generally performing better than OTU-based measures (Table 4). This finding

holds true even after removing potential chimeras (Table S1). In this case, a light weighting

or no weighting of phylogenetic diversity by abundance performed better than full

abundance-weighting.

Applications summary
In all three of the datasets investigated, abundance-weighted phylogenetic diversity

measures showed good performance to distinguish between community states: between

“normal” and dysbiotic samples in the oral and vaginal microbiomes, and between

developmental stages in the skin microbiome. Notably, the best distinguishing measure in

each dataset was phylogenetic; in addition BWPD0.25 and BWPD0.5 were the only measures

that were in the top four for all datasets. The result that partial abundance weighting

performs well corresponds to analogous results for beta diversity, where an intermediate

exponent for “generalized UniFrac” was the most powerful (Chen et al., 2012).

DISCUSSION
Phylogenetic alpha diversity measures were more closely related to community state

than were discrete measures based on OTU clustering for the datasets investigated here.

This result is especially interesting given that the Simpson index, the Shannon index,

or counting applied to OTU tables are very common ways of characterizing microbial

diversity (Fierer et al., 2007; Grice et al., 2009; Hill et al., 2003; Dethlefsen & Relman,

2011). As also noted by Aagaard et al. (2012), we find that measurements of diversity

using taxonomic classification can be useful in describing communities, and in fact

perform much better than the same measurements of diversity applied to OTU counts;

however, this approach requires a taxonomically well characterized environment. Our
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results can be viewed as an experimental confirmation of the notion that incorporating

similarity between species is important to get sensible measures of diversity, which has

been advocated by many, including most recently by Leinster & Cobbold (2012).

We find that classical phylogenetic diversity is sensitive to sampling depth, underes-

timating the true value in small samples. Biases have also been described for diversity

measures using OTU tables (Gihring, Green & Schadt, 2012). In contrast, we observe that

some abundance-weighted phylogenetic measures are relatively robust to varying levels of

sampling.

These results did not appear to be the result of sequencing issues. In principle, OTU

methods could have performed badly because of error-prone and chimeric sequences

inflating the number of OTUs. Although this is a real danger for OTU quantification, in

this study its impact appears to be limited–similar results were obtained with the oral data

after de-noising and chimera removal and the skin data (which used Sanger sequencing)

after chimera removal.

We note that on our data, non-phylogenetic measures applied to family level taxonomic

groupings are generally more discriminating than the corresponding measures applied

to OTUs. This may be because our sequences are from the human microbiome, and

taxonomic classification is especially well-developed in that setting; in particular the

taxonomic names may already be defined in a way that corresponds to dysbiosis. Thus this

particular difference may not continue to be true in a taxonomically less-well-characterized

environment.

As of the publication of this paper, no abundance-weighted phylogenetic alpha diversity

measures are implemented in either mothur (Schloss et al., 2009) or QIIME (Caporaso et

al., 2010), two of the most popular tools for analysis of microbial ecology data. Although

the fact that abundance-weighted phylogenetic diversity measures performed very well

for the three datasets investigated here does not imply that they are best in general, we

suggest that abundance-weighted phylogenetic measures be given greater consideration

for microbial ecology studies. For this to happen, implementations in commonly used

microbial ecology software packages will be needed, in addition to our implementation

and that of the picante R package (Kembel et al., 2010).
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